Guidelines for Numerical Codes

Hans Petter Langtangen!:?

!Simula Research Laboratory
2University of Oslo

May 28, 2010

Abstract

A common conception is that simple scientific computing scripts imple-
mented in Matlab and Python are very similar - almost identical. However,
practice observed by this author shows that students (and teachers) tend
to make software with bad design in Matlab, while the design improves
significantly when they use Python. This note points to the importance of
a software design that acknowledges the generic nature of mathematical
algorithms.

This document is also available in HTML format.

Motivation

Many science courses now have examples and exercises involving implementation
and application of numerical methods. How to structure such numerical programs
has, unfortunately, received little attention. Students and teachers occasionally
write programs that are too tailored to the problem at hand instead of being a
good starting point for future extensions. A key issue is to split the program into
functions and to implement general mathematics in general functions applicable
to many problems. We shall illustrate this point through a case study and briefly
discuss the merits of different types of programming styles.

Exercise

Integrate the function g(t) = exp (—t*) from -2 to 2 using the Trapezoidal rule,
defined by

n—1

b
/ f(z)dmh<§<f<a>+f>+2f<a+m>>, h=0-a)n 1)

http://hplgit.github.io/edu/computing_competence/computing_competence.html

Solution 1: Minimalistic Matlab

The simplest possible program may look as follows in Matlab:

a=-2; b=2;
n = 1000;
h = (b-a)/n;
s = 0.5%(exp(-a~4) + exp(-b~4));
for i = 1:n-1
s = s + exp(-(ati*h)74);
end
r = hx*s;
r

The solution is minimalistic and correct. Nevertheless, this solution has a
pedagogical and software engineering flaw: a special function exp(—t*) is merged
into a general algorithm (1) for integrating an arbitrary function f(x).

Solution 2: Matlab with functions

A successful software engineering practice is to use functions for splitting a
program into natural pieces, and if possible, make these functions sufficiently
general to be reused in other problems. In the present problem we should strive
for the following principles:

e The Trapezoidal rule is implemented in a separate Python function taking
a general mathematical function f(x) as argument, together with the input
data for the problem: the integration limits a and b and the numerical
resolution parameter n.

e The special g(t) formula is implemented in a separate Python function.

e A main program solves the specific problem in question by calling the
general algorithm (the Trapezoidal integration function) with the special
data of the given problem (g(t), a = —2, b = 2, n = 1000).

Let us apply these desirable principles in a Matlab context. User-defined Matlab
functions must be placed in separate files. This is sometimes found annoying,
and therefore many programmers tend to avoid functions. In the present case, we
should implement the Trapezoidal method in a file Trapezoidal.m containing

function r = Trapezoidal(f, a, b, n)
TRAPEZOIDAL Numerical integration from a to b
with n intervals by the Trapezoidal Tule
fcnchk (£) ;
(b-a) /n;
0.5%(f(a) + £(b));
r i 1:n-1

s s + f(a+i*h);

VA
A
f
h
s
fo

end
r = hx*s;

The special g(t) function is implemented in a separate file g.m:

function v =
v = exp(-t~4)
end

g(t)

Finally, we create a main program main.m:

a -2; b = 2;

n 1000;

result = Trapezoidal(@g, a, b, n);
disp(result);

exit

Solution 3: Standard Python

Both Solution 1 and Solution 2 are readily implemented in Python. However,
functions in Python do not need to be located in separate files to be reusable,
and therefore there is no psychological barrier to put a piece of code inside a
function. The consequence is that a Python programmer is more likely to go
for Solution 2. The relevant code can be placed in a single file, say main.py,
looking as follows:

def Trapezoidal(f, a, b, n):
h = (b-a)/float(n)
s = 0.5%(f(a) + £(b))
for i in range(l,n,1):
s = s + f(a + i*h)
return hxs

from math import exp # or from math import *
def g(t):
return exp(-t**4)

a=-2; b=2

n = 1000

result = Trapezoidal(g, a, b, n)
print result

Discussion

Looking at the simple exercise isolated, all three solutions produce the same
correct mathematical result and are hence equivalent mathematically. However,
the nature of this exercise is that we want to solve a special problem by a general
mathematical method. This is often the case when mathematics is applied to
practical problems. The software should reflect this division between the general
part and the special part of the given problem of two reasons.

First, the division is important for the understanding the general nature of
mathematical methods and how general methods can be used to solve a special
problems. Second, the implementation of the general part, here the Trapezoidal
rule, can be reused in many other problems.

We may say that the first reason is comes from the philosophy of mathematics
and science, while the second reason is motivated by the practical aspect of
reducing future coding efforts by relying on a reusable, general, and working

function. This aspect is the basis of a fundamental software engineering practice:
programs should consist of general pieces (functions) that can be reused without
modifications to solve other problems. The importance of this philosophy becomes
obvious when we extend the problem as described below.

Another point worth mentioning is the way we can transfer functions to
functions as an argument. The argument f in the Python function Trapezoidal
is treated as a standard variable, and f is called by simply writing f(x). In
Matlab and other languages, functions that are argument to other functions
require special, often somewhat “ugly”, syntax. This aspect, together with the
ease of writing functions, make the Python solution slightly preferable in the
present case.

We also emphasize that the g(t) formula is implemented in a separate Python
function such that the formula can be reused in other occasions, for instance,
when integrating ¢(t) by an alternative numerical integration rule. In many
problems, the formula is much more complicated than the one used here, and it
is important to have a single, well-tested implementation of the formula.

Readers may also realize that the nature of programming (combined with
sound programming habits) helps to increase the understanding of mathematics
through the clear distinction between general methods and a specialized problem.
Understanding the generality of methods also requires an understanding of
abstractions in mathematics. Programming exercises therefore enforce a stronger
focus on abstractions in general. All these arguments boil down to Kristen
Nygaard’s famous three words: “Programming is understanding”!

Extended Exercise

Compute the following integrals with the Midpoint rule, the Trapezoidal rule,

and Simpson’s rule:
/sinwdaj = 2,
0
< 1 2
e Vdx = 1,
/_Oo V2T
1
/3x2d:1: = 1,
0

In11
/ e“der = 10,
0

13
/ —Vzxdx
0 2

|
=

For each integral, write out a table of the numerical error for the three methods
using a n function evaluations, where n varies as n =2 +1, k= 1,2, ...,12.

Discussion

In the extended problem, Solution 1 is obviously inferior because we need to
apply, e.g., the Trapezoidal rule to five different integrand functions for 12
different n values. Then it makes sense to implement the rule in a separate
function that can be called 60 times.

Similarly, a mathematical function to be integrated is needed in three different
rules, so it makes sense to isolate the mathematical formula for the integrand in
a function in the language we are using.

We can briefly sketch a compact and smart Python code, in a single file, that
solves the extended problem:

def f1(x):
return sin(x)

def £2(x):
return 1/sqrt(2)*exp(-x**2)

def £5(x):
return 3/2.0*sqrt(x)

def Midpoint(f, a, b, n):
def Trapezoidal(f, a, b, n):
def Simpson(f, a, b, n):

problems = [(f1, 0, pi), # list of (function, a, b)
(f2, -5, 5),
(£3, 0, 1)1
methods = (Midpoint, Trapezoidal, Simpson)
result = []
for method in methods:
for func, a, b in problems:
for k in range(1,13):
n = 2%k + 1

I = method(func, a, b, n)
result.append((I, method.__name__, func.__name__, n))

write out results, nicely formatted:
for I, method, integrand, n in result:
print ’%-20s, %-3s, n=)5d, I=Jg’ % (I, method, integrand, n)
Note that since everything in Python is an object that can be referred to by
a variable, it is easy to make a list methods (list of Python functions), and a
list problems where each element is a list of a function and its two integration
limits. A nice feature is that the name of a function can be extracted as a string
in the function object (name with double leading and trailing underscores).
To summarize, Solution 2 or 3 can readily be used to solve the extended
problem, while Solution 1 is not worth much. In courses with many very simple

exercises, solutions of type 1 will appear naturally. However, published solutions
should employ approach 2 or 3 of the mentioned reasons, just to train students
to think that this is a general mathematical method that I should make reusable
through a function.

Solution 4: A Java OO Program

Introductory courses in computer programming usually employ the Java language
and emphasize object-oriented programming. Many computer scientists argue
that it is better to start with Java than Python or (especially) Matlab. But how
well is Java suited for introductory numerical programming?

Let us look at our first integration example, now to be solved in Java. Solution
1 is implemented as a simple main method in a class, with a code that follows
closely the displayed Matlab code. However, students are in a Java course trained
in splitting the code between classes and methods. Therefore, Solution 2 should
be an obvious choice for a Java programmer. However, it is not possible to
have stand-alone functions in Java, functions must be methods belonging to a
class. This implies that one cannot transfer a function to another function as an
argument. Instead one must apply the principles of object-oriented programming
and implement the function argument as a reference to a superclass. To call the
"function argument', one calls a method via the superclass reference. The code
below provides the details of the implementation:

import java.lang.x*;

interface Func { // superclass for functions f(z)
public double f (double x); // default empty implementation

class f1 implements Func {

public double f (double t)

{ return Math.exp(-Math.pow(t, 4)); }
}

class Trapezoidal {
public static double integrate
(Func f, double a, double b, int n)

{
double h = (b-a)/((double)n);
double s = 0.5%(f.f(a) + £.£(b));
int i;
for (i = 1; i <= n-1; i++) {
s = s + f.f(a+ixh);
}
return hx*s;
¥

}

class MainProgram {
public static void main (String argvl[])

double a -2;
double b 2;
int n = 1000;

double result = Trapezoidal.integrate(f, a, b, n);
System.out.println(result);

}

From a computer science point of view, this is a quite advanced solution since it
relies on inheritance and true object-oriented programming. From a mathematical
point of view, at least when compared to the Matlab and Python versions, the
code looks unnecessarily complicated. Many introductory Java courses do not
cover inheritance and true object-oriented programming, and without mastering
these concepts, the students end up with Solution 1. On this background, one
may argue that Java is not very suitable for implementing this type of numerical
algorithms.

Conclusions and Recommendations

Simple exercises have pedagogical advantages, but some disadvantages with
respect to programming, because the programs easily become too specialized. In
such cases, the exercise may explicitly ask the student to divide the program into
functions. This requirement can be motivated by an extended exercise where a
piece of code are needed many times, typically that several methods are applied
to several problems.

Especially when using Matlab, students may be too lazy to use functions
when this is not explicitly required.

Although Java is very well suited for making large programs systems, Java
code for simpler numerical problems, where one wants to transfer functions to
other functions, looks as an overkill compared with Matlab, Python, C++, and
Fortran implementations.

Recommendations.

1. Identify general and special parts of the mathematical problem to be
solved.

2. Implement the general parts in functions that can be reused to
solve similar problems. Consider carefully the argument lists of the
functions.

3. Isolate the special features of the problem in a separate "main'
function or a main program. The best solution is to isolate the
special features in a file separate from the general functions.

