Learning Outcomes for Computing

Competence

Hans Petter Langtangen!>?

Morten Hjorth-Jensen®*

Anders Malthe-Sgrenssen®
Knut Mgrken®

!Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo
3Department of Physics, University of Oslo
4Department of Physics and Astronomy, Michigan State University
®Department of Mathematics, University of Oslo

Dec 16, 2015

HTML version
This note is under development! Send comments to hpl@simula.no.

Abstract

This note lists a set of learning outcomes for mastering computer-based
problem solving in mathematical subjects. A case study describes and
discusses the learning outcomes in depth.

Contents

Why is computing competence important?

First of all, we need to define the term computing and what it contains.

http://hplgit.github.io/edu/py_vs_m/computing_competence.html
mailto:hpl@simula.no

Definition of computing.

Computing means in this document solving scientific using computers. It
covers numerical as well as symbolic computing. Computing is also about
developing an understanding of the scientific process by enhancing the
algorithmic thinking when solving problems.

Computing competence has always been a central part of the science and
engineering education. Traditionally, such competence meant mastering math-
ematical methods to solve science problems - by pen and paper. In 2015, our
candidates are expected to use all available tools to solve scientific problems;
computers primarily, but also pen and paper. Below, we use the term algorithms
in the broad meaning: mathematical methods to solve science problems, with
and without computers.

Computing competence is about

e derivation, verification, and implementation of algorithms

e understanding what can go wrong with algorithms

e overview of important, known algorithms

e understanding how algorithms are used to solve mathematical problems

e reproducible science and ethics

algorithmic thinking for gaining deeper insights about scientific problems

Algorithms involving pen and paper are traditionally aimed at what we often refer
to as continuous models. Application of computers calls for approximate discrete
models. Much of the development of methods for continuous models are now
being replaced by methods for discrete models in science and industry, simply
because much larger problem classes can be addressed with discrete models,
often also by simpler and more generic methodologies. However, verification of
algorithms and understanding their limitations requires much of the classical
knowledge about continuous models.

So, why should basic university education undergo a shift from classical
mathematics to modern computing?

1. The impact of the computer on mathematics is tremendous: science and
industry now rely on solving mathematical problems through computing.

2. Computing increases the relevance in education by solving more realistic
problems earlier.

3. Computing through programming is excellent training of creativity.

4. Computing enhances the understanding of abstractions and generalization.

5. Computing decreases the need for special tricks and tedious algebra, and
shifts the focus to problem definition, visualization, and “what if” discus-
sions.

The result is a deeper understanding of mathematical modeling. Not only is
computing via programming a very powerful tool, it also a great pedagogical
aid. We believe in the famous quote by Kristen Nygaard: “Programming is
understanding”.

For the mathematical training, there is one major new component among the
arguments above: understanding abstractions and generalization. While many
of the classical methods developed for continuous models are specialized for a
particular problem or a narrow class of problems, computing-based algorithms
are often developed for problems in a generic form and hence applicable to a
large problem class.

Key principle in scientific modeling.

The power of the scientific method lies in identifying a given problem as a
special case of an abstract class of problems, identifying general solution
methods for this class of problems, and applying a general method to the
specific problem (applying means, in the case of computing, calculations
by pen and paper, symbolic computing, or numerical computing by ready-
made and/or self-written software). This generic view on problems and
methods is particularly important for understanding how to apply available,
generic software to solve a particular problem.

Computing competence represents a central element in scientific problem
solving, from basic education and research to essentially almost all advanced
problems in modern societies. Computing competence is simply central to further
progress. It enlarges the body of tools available to students and scientists beyond
classical tools and allows for a more generic handling of problems. Focusing on
algorithmic aspects results in deeper insights about scientific problems.

Today’s project in science and industry tend to involve larger teams. Tools for
reliable collaboration must therefore be mastered (e.g., version control systems,
automated computer experiments for reproducibility, software and method
documentation).

General learning outcomes for computing compe-
tence

Learning outcomes for numerical algorithms:

e Deep knowledge of the most fundamental algorithms for linear algebra,
ordinary and partial differential equations, optimization, and statistical
uncertainty quantification.

e Overview of advanced algorithms and how they can be accessed in available
software.

e Knowledge of high-performance computing elements: memory usage, vec-
torized and parallel algorithms.

e Understanding of approximation errors.

e Application of fundamental and advanced algorithms to classical model
problems as well as real-world problems with assessment of the uncertainty
in the answer.

Learning outcomes for symbolic computing:

e Knowledge of at least one computer algebra system and how it is applied
to perform classical mathematics (calculus, linear algebra, differential
equations - with verification).

Learning outcomes for programming:

e Extensive experience with programming in a high-level language (MATLAB,
Python, R). Experience with programming in a compiled language (Fortran,
C, C++).

e Extensive experience with implementing and applying numerical algo-
rithms in reusable software that acknowledges the generic nature of the
mathematical algorithms.

e Knowledge of basic software engineering elements: functions, classes, mod-
ules/libraries, testing procedures and frameworks, scripting for automated
and reproducible experiments, documentation tools, and version control
systems.

e Extensive experience with debugging software, e.g., as part of implementing
comprehensive tests.

Learning outcomes for verification:

e Extensive experience with programming of testing procedures.
e Deep knowledge of testing/verification methods:

Exact solution of numerical models

Method of manufactured solutions (choose solution and fit a problem)
— Classical analytical solutions (incl. asymptotic solutions)

— Computing of asymptotic approximation errors (convergence rates)

e Step-wise construction of tests to aid debugging.

Learning outcomes for mathematical modeling:

e Experience with deriving computational models from basic principles in
applied sciences (physics, geology, biology, etc.).

e Experience with bringing models on dimensionless form to reduce and sim-
plify input data and increase the understanding of the model by interpreting
its dimensionless parameters.

e Experience with solving real problems from applied sciences.
Learning outcomes for presentation of results:

e Experience with different visualization techniques for different types of
computed data.

e Extensive experience with presenting computed results in scientific reports
and oral presentations.

What is deep knowledge?

By deep knowledge we here mean the understanding of the underlying
fundamental ideas and concepts from which a plethora of seemingly dif-
ferent methods and technologies can be derived. In other words, the deep
knowledge brings structure to all the technical details.

Obtaining this type knowledge requires time in class and a lot of
exercises. In addition, the students need to reflect about theory and
practice. The reflection process is often difficult to implement. Below are
some suggestions.

A useful concept is simplify, understand, and then generalize. Giving a
superficial overview of a bunch of unrelated methods and their applications
to unrelated scientific problems equips the students with a wide toolbox,
but fails to enhance a fundamental understanding of how multidisciplinary
topics play together. Instead, we believe in the following list.

1. Pick a few selected classes of problems,

2. start out with simplified models,

apply general, fundamental ideas to construct algorithms,
understand all details to correctly implement the algorithms,

understand how to judge the numerical quality of the algorithms,

® & > &9

understand how to verify that the computations are mathematically
correct.

The verification process forces the student to reflect on all the points: What
type of problem is actually solved? How can I test that the solution is
right?

After obtaining an understanding of the simplified problem, one can
generalize the models to real applications, but illustrate how the insight
from the simplified models and methods gives very valuable knowledge
when attacking the generalizations. The focus on simplified models help
to detach the mathematics from a lot of discipline-dependent application
details and cultivate the common mathematical and implementational
ideas.

This philosophy is closely related to the Key principle stated earlier:

1. solving a complicated problem first starts with the purpose of breaking
up the problem into subtasks that belong to general classes of well-
studied problems in mathematics,

2. each subproblem is understood with great help simplified models in
that class,

3. and finally a synthesis of the subproblems can solve the original
problem.

hpl 1: Need to highlight educational methods: instruction based teaching,
project work, ...

Case study

The series of goals above are briefly stated, but illustrated here in detail for a
special, simple case study: numerical integration by the Trapezoidal rule.

Many science courses now have examples and exercises involving implemen-
tation and application of numerical methods. How to structure and verify such
numerical programs has, unfortunately, received little attention in university
education and the literature. Students and teachers occasionally write programs
that are too tailored to the problem at hand instead of being a good starting
point for future extensions, and testing is often limited to running a case where
the answer seems reasonable. The standards of computing need to be raised to
the levels found in experimental physics, chemistry, and biology.

Observation: poor versus good design of programs depends on
the programming language (!).

A common conception is that simple scientific computing scripts imple-
mented in Matlab and Python are very similar - almost identical. However,
practice observed by this author shows that students and teachers tend to
make software with bad design in Matlab, while the design improves signif-
icantly when they use Python. Bad design means specializing a generic
algorithm to a specific problem and making “flat” programs without func-
tions. Good design means reusable implementations of generic algorithms
and proper use of functions (or classes). The coming text demonstrates
the assertions.

Exercise for the case study

Integrate the function g(t) = exp (—t*) from -2 to 2 using the Trapezoidal rule,
defined by

b n—1
/ f(z)dmh<§<f<a>+f>+zf<a+m>>, =)/ ()

Solution 1: Minimalistic Matlab
Many will attempt to solve the problem by this simple program in Matlab:

a=-2;b=2;
n = 1000;
h = (b-a)/n;
s = 0.5%(exp(-a~4) + exp(-b74));
for i = 1:n-1
s = s + exp(-(a+ti*h)~4);
end
r = hx*s;
r

The solution is minimalistic and correct. Nevertheless, this solution has a
common pedagogical and software engineering flaw: a special function exp(—t*)
is merged into a general algorithm (1) for integrating an arbitrary function f(z).

The writer of the program runs it and reports the result: 1.81280494737.
How can one assess that this result is correct? There is no exactly known result
to compare with. Also, the program above is not well suited for switching to
an integrand where we can compare with an exact answer, because several lines
need modification.

Solution 2: Matlab with functions

A fundamental software engineering practice is to use functions for splitting a
program into natural pieces, and if possible, make these functions sufficiently
general to be reused in other problems. In the present problem we should strive
for the following principles:

1. Since the formula for the Trapezoidal rule works for “any” function, the
implementation of the formula should be in terms of a function taking
f(x), a, b, and n as arguments.

2. The special g(t) formula is implemented as a separate function.

3. A main program solves the specific problem in question by calling the
general algorithm from point 1 with the special data of the given problem
(g(t), a=—=2,b=2,n=1000).

4. Before we can believe in the integration of g(t), we need to verify the
implementation (see Section).

Let us apply the desirable principles 1-3 in a Matlab context. User-defined
Matlab functions must be placed in separate files. This is sometimes found
annoying, and therefore many students and teachers tend to avoid functions.
In the present case, we should implement the Trapezoidal method in a file
Trapezoidal.m containing

function r = Trapezoidal(f, a, b, n)

7 Numerical integration from a to b

with n intervals by the Trapezoidal Tule
fcnchk (£) ;

(b-a)/n;

0.5x(f(a) + £(b));

i 1:n-1

s s + f(a+i*h);

Hhn Bk ss

o
=1

end
r = h*s;

The special g(t) function can be implemented in a separate file g.m or put in
the main program. The function becomes

function v =
v = exp(-t~4)
end

g(t)

Finally, a specialized main program (main.m) solves the problem at hand:

a -2; b = 2;

n 1000;

result = Trapezoidal(@g, a, b, n);
disp(result);

exit

The important feature of this solution is that Trapezoidal.m can be reused for
“any” integral. In particular, it is straightforward to also integrate an integrand
where we know the exact result.

An advantage of having the g(t) as a separate function is that we can easily
send this function to a different integration method, e.g., Simpson’s rule.

Solution 3: Standard Python

Both Solution 1 and Solution 2 are readily implemented in Python. However,
functions in Python do not need to be located in separate files to be reusable,
and therefore there is no psychological barrier to put a piece of code inside a
function. The consequence is that a Python programmer is more likely to go
for Solution 2. (This may be the reason why the author has observed scientific
Python codes to have better design than Matlab codes - modularization comes
more natural.) The relevant code can be placed in a single file, say main.py,
looking as follows:

def Trapezoidal(f, a, b, n):
h = (b-a)/float(n)
s = 0.5%(f(a) + £(b))
for i in range(O,n,1):
s =s + f(a + i*h)
return hx*s

from math import exp # or from math import *
def g(t):
return exp(-t**4)

a -2; b =2

n = 1000

result = Trapezoidal(g, a, b, n)
print result

This solution acknowledges the fact that the implementation is a generally
applicable function, just as the Trapezoidal formula.

However, a small adjustment of this implementation will make it much better.
If somebody wants to reuse the Trapezoidal function for another integral, they
can import Trapezoidal from the main.py file, but the special problem will
be executed as part of the import. This is not desired behavior when solving
another problem. Instead, our special exercise problem should be isolated in its
own function and called from a test block in the file (to avoid being executed as
part of an import). This is the general software design of modules in Python.

We therefore rewrite the code in a new file Trapezoidal.py:

def Trapezoidal(f, a, b, n):
h = (b-a)/float(n)
s = 0.5%(£(a) + £(b))
for i in range(l,n,1):
s = s + f(a + i*h)
return h*s

def _my_special_problem():
from math import exp
def g(t):
return exp(-t**4)

a=-2; b=2

n = 1000

result = Trapezoidal(g, a, b, n)
print result

if __name == ’_ main__’:

_my_special_pfobleﬁz) '
Now we have obtained the following important features:

e The file Trapezoidal.py is a module offering the widely applicable function
Trapezoidal for integrating “any” function.

o If Trapezoidal.py is run as a program, the if test is true and the special
integral of g is computed.

e In an import like from Trapezoidal import Trapezoidal, the if test is
false and nothing gets computed.

Verification and testing frameworks

An integral part of any implementation is verification, i.e., to bring evidence
that the program works correctly from a mathematical point of view. (A related
term, validation, refers to bringing evidence that the program produces results
in accordance with observations of nature, but this is not of direct interest in
this integration context.)

The intuitive approach to testing is to compare results of a program with
known mathematical results. For example, we can choose some function, say
sint, and differentiate it to obtain an integrand that we can easily integrate by
hand and thereby get a precise number for the integral. Integrating f_22 costdt
gives the exact result 1.81859485365. The program with the Trapezoidal rule
reports 1.81859242886, so the error 2.42 - 107° is “small”. However, we have no
idea if this error is just the approximation error in the numerical method or if
the program has a bug too! What if the error were 1.67 - 1073? It is impossible
to say whether this answer is the correct numerical result or not. Actually, this
error contains both the approximation error and a bug where the loop goes over
0,1,....,n— 1.

So, comparison of a numerical approximation with an exact answer does not
say much unless the error is “huge” and therefore clearly points to fundamental
bugs in the code.

For most numerical methods there are only two good verification methods:

1. Computation of a problem where the approximation error vanishes.

2. Empirical measurement of the convergence rate.

Verification methods should be implemented in test functions that can be run at
any time to check if the implementation is correct.

10

A simple test function

The Trapezoidal rule is obviously exact for linear integrands. Therefore, we
should test an “arbitrary” linear function and check that the error is close
to machine precision. This is done in a separate function in a separate file
test_Trapezoidal.py:

from Trapezoidal import Trapezoidal
from Trapezoidal_vec import Trapezoidal as Trapezoidal_vec

def linear():
"""Test linear integrand: exact result for any n.

mmn

def f(x):
return 8*x + 6

def F(x):
"miAnti-derivative of f(z)."""
return 4*x**2 + 6%x

a =2

b =6

exact = F(b) - F(a)

numerical = Trapezoidal(f, a, b, n=4)
error = exact - numerical

print ’%.16f’ 7, error

The output of calling linear () is in this case zero exactly, but in general one
must expect some small rounding errors in the numerical and exact result.

A proper test function for the nose or pytest test framework

The function linear performs the test, but it would be better to integrate the
test into a testing framework such that we with one command can execute a
comprehensive set of tests. This makes it easy to run all tests after every small
change of the software. Students should adopt such compulsory habits from the
software industry.

The dominating type of test frameworks today is based on what is called
unit testing in software engineering. It means that we pick a unit in the software
and write a function (or class) that runs the test after certain specifications:

e The test function must start with test_.
e The test function cannot have any arguments.

e If the test fails, an AssertionError exception (in Python) is raised, oth-
erwise the function runs silently.

There are two very popular test frameworks in the Python world now: pytest and
nose. There are similar frameworks developed for Matlab too, see a video, but
they are not as user friendly since they require the programmer to embed tests
in classes (this is still the dominating method in most programming languages).

11

https://github.com/hplgit/hplgit.github.com/tree/master/edu/py_vs_m/src/test_Trapezoidal.py
http://se.mathworks.com/support/2015a/matlab/8.5/demos/matlab-unit-test-framework-in-release-2013a.html

Using test functions instead of test classes requires writing less code and is easier
to learn.

In our case, a proper test function means the following rewrite of the function
linear:

def test_linear():
"""Test linear integrand: exzact result for any n."""

def f(x):
return 8*x + 6

def F(x):
"iAnti-derivative of f(z)."""
return 4*x**2 + 6%Xx

expected = F(b) - F(a)

tol = 1E-14

computed = Trapezoidal(f, a, b, n=4)

error = abs(expected - computed)

msg = ’Trapezoidal: expected=Jg, computed=lg, error=/g’ 7% \
(expected, computed, error)

assert error < tol, msg

The code is basically the same, but we comply to the rules in the three bullet
points above. The assert statement has the test as error < tol, with msg as
an optional message that is printed only if the test fails (error < tol is False).
The msg string can be left out and it suffices to do assert error < tol.

The reason why we comply to testing frameworks is that we can use software
like nose or pytest to automatically find all our tests and execute them. We put
tests in files or directories starting with test and run one of the commands

Terminal> nosetests -s -v .
Terminal> py.test -s -v .

All functions with names test_*() in all files test*.py in all subdirectories
with names test* will be run, and statistics about how many tests that failed
will be printed. The tests should be run after every modification of the software.

Use of symbolic computing for exact results

We integrated by hand the linear function used in the test above. In more
complicated cases it would be safer to use symbolic computing software to carry
out the mathematics. Here we demonstrate how to use the Python package
SymPy to do the integration:

def test_linear_symbolic():
"""Test linear integrand: exact result for any n."""
import sympy as sym
Define a linear expression and integrate <t
sym.symbols(’x’)
8*x + 6 # Integrand for this test

x
£
F = sym.integrate(f, x)

12

Verify symbolic computation: F’(z) == f(z)

assert sym.diff(F, x) ==

Transform expressions f and F to Python functions of z
f = sym.lambdify([x], f, modules=’numpy’)

F = sym.lambdify([x], F, modules=’numpy’)

Run one test with fized a, b, n, for scalar and
vectorized implementation

a =2

b=6

expected = F(b) - F(a)

tol = 1E-14

for func in Trapezoidal, Trapezoidal_vec:
computed = func(f, a, b, n=4)
error = abs(expected - computed)
msg = ’expected=Jg, computed=Jg, error=/g’ % \
(expected, computed, error)
assert error < tol, msg

Note that we now also test both the scalar and the vectorized implementations
of the Trapezoidal rule (see Section for explanation of the vectorized version
Trapezoidal_vec). It is easy in Python to loop over functions (with a variable
like func). We could also just compare the result of Trapezoidal_vec to that
of Trapezoidal when the latter is verified against the expected value.

Use relative errors

Let us change the integration limits in our test example to @ = 2 - 10® and
b=6-10°. The computed error in this case is 16384 (!). Hence the tolerance
must be set to (e.g.) 2-10° (1). In general, the tolerance depends on the magnitude
of the numbers involved in the computations. To avoid this dependence, one
should use relative errors:

error = abs(expected - computed)/abs(expected)

Now, a tolerance of 10~ is adequate for the test even if the numbers expected
and computed are large.

A function test_linear_symbolic_large_limits in the file test_Trapezoidal.py
is a test function for a case with large limits and use of the relative error.

Test function for the convergence rate

Let us extend the verification with a case where we know the exact answer of the
integral, but we do not know the approximation error. The only knowledge we
usually have about the approximation error is of asymptotic type. For example,
for the Trapezoidal rule we have an expression for the error from numerical
analysis:

(b—a

)3
E=—
12n

58, €€ ab].

Since we do not know &, which is some number in [a, b], we cannot compute F.

However, we realize that the error has an asymptotic behavior as n=2:

13

E=Cn"2,

for some unknown constant C. If we compute two or more errors for different n
values, we can check that the error decays as n~2. In general, when verifying
the implementation of a numerical method with discretization parameter n, we
write E = Cn", estimate r, and compare with the exact result (here n = —2).

More precisely, we perform a set of experiments for n = ng, ni, ..., n.;,, where
we empirically estimate 7 from two consecutive experiments:

Ei = C”I’LI7
Eit1=0Cniyy.

Dividing the equations and solving with respect to r gives

IH(EZ /Ei—l-l)
r=————-=
In(ri/ris1)
Asi=0,...,m — 1, the r values should approach the value —2.
It is easy to use the method of manufactured solutions to construct a test

problem. That is, we first choose the solution, say the integral is given by
F(b) — F(a), where

F(z) = e "sin(2z).

Then we fit the problem to accept this solution. In the present case it means
that the integrand must be f(z) = F’(x). We use for safety symbolic software to
calculate f(x). Thereafter, we run a series of experiments where n is varied, we
compute the corresponding convergence rates r from two consecutive experiments
and test if the final r, corresponding to the two largest n values, is sufficiently
close to the expected convergence rate —2:

def test_convergence_rate():
import sympy as sym

Construct test problem

x = sym.symbols(’x’)

F = sym.exp(-x)*sym.sin(2*x) # Anti-derivative

f = sym.diff(F, x) # Integrand for this test
Turn to Python functions

f = sym.lambdify([x], f, modules=’numpy’)

F = sym.lambdify([x], F, modules=’numpy’)

a=20.1

b=20.9

expected = F(b) - F(a)
Run exzperiments (double m in each experiment)
n=1
errors = []
for k in range(28):
n *= 2
computed = Trapezoidal(f, a, b, n)
error = abs(expected - computed)

14

errors.append((n, error))
print k, n, error
Compute empirical convergence rates
from math import log as In
estimator = lambda E1, E2, nl, n2: 1n(E1/E2)/1n(float(nl)/n2)
r =[]
for i in range(len(errors)-1):
nl, E1 = errors[il
n2, E2 = errors[i+1]
r.append(estimator(El, E2, nl, n2))
expected = -2
computed = r[-1] # The "most" asymptotic wvalue
error = abs(expected - computed)
tol = 1E-3
msg = ’Convergence rates: %s’ 7/ r
print errors
assert error < tol, msg

The empirical convergence rates are in this example

-2.022, -2.0056, -2.0014, -2.00035, -2.000086, -2.000022,
-2.0000054, -2.0000013, -2.00000033

Although the rates are known to approach —2 as n — oo, the rates are close
to —2 even for large n (such as n = 4). A rough tolerance is often used for
convergence rates, for instance 0.1, but here we may use a smaller one if desired.

Summary.

Knowing an exact solution to a mathematical problem and comparing the
program output with such a solution, gives only an indication that the
program may be correct, but it is only a rough indication. Any real test
must use what we know about the approximation error, and that is usually
only an asymptotic behavior as function of discretization parameters. The
test needs to vary the discretization parameter(s) to estimate convergence
rates for comparison with known asymptotic results.

Known analytical solutions are of value in convergence rate tests, but
if they are not available, or restricted to very simplified cases, the method
of manufactured solutions, where we solve a perturbed problem fitted to a
constructed exact solution, is also a very useful technique.

Tests in Matlab

In Matlab, one must decide whether to use a class-based system for unit testing or
just write test functions that mimic the behavior of the Python test functions for
the nose and pytest frameworks. Here is an example on doing the test_linear ()
function in Matlab:

function test_trapezoidal_linear
4% Check that linear functions are integrated ezactly

15

@(x) 8*x + 6;
Q(x) 4*x*x2 + 6%x; [/ Anti-derivative
2;
expected = F(b) - F(a);
tol = 1E-14;
computed = trapezoidal(f, a, b, 4);
error = abs(expected - computed);
assert(error < tol, ’n=)d, error=Jg’, n, error);
end
end

T T
o onn

test_trapezoidal_linear()

There is, unfortunately, no software available to run all tests in all files in
all subdirectories and report on the success/failure statistics, but it is quite
straightforward to write such software.

Rounding errors

Verification in terms of measuring convergence rates usually gives a very good
insight into approximation errors, but the verification results may be affected
by rounding errors, depending on the type of algorithm. For the scalar imple-
mentation of the Trapezoidal rule, rounding errors start to affect the results
around n = 2?4 ~ 16 million points. Other algorithms are much more sensitive
to rounding errors. For example, a numerical derivative like

gy LT 0 =26(@) St)

B2
may be subject to rounding errors for moderate values of h. Here is an example
with f(z) = 275, An exact answer is f”(1) = 42, but numerical experiments for
with h = 10~ for various k values end up with

k numerical f”
44.61504
42.02521
42.00025
42.00000
41.99999
42.00074
41.94423
47.73959

-666.13381

10 0.00000

11 0.00000

12 -666133814.8

13 66613381477.5

14 0.00000

CO O UL i W N+

Ne]

The error starts to increase rather than decrease for k > 107°, and this is because
the rounding error is (much) bigger than the approximation error in the formula.

16

Incorporation of other learning outcomes

We discuss here how some of the learning outcomes from Section can be
incorporated in the exercise with the Trapezoidal rule. We restrict programming
examples to use Python.

High-performance computing: vectorization

This author has seen a lot of programs used for teaching which apply vectorization
without explicit notice. Vectorization is a technique in high-level languages like
IDL, MATLAB, Python, and R for removing loops and speed up computations.
Unfortunately, the “distance” from the mathematical algorithm to vectorized
code is larger than to a plain loop as we used above. Vectorization therefore
tends to confuse students who are not well educated in the techniques. For
example, the Trapezoidal rule can be vectorized as

import numpy as np

def Trapezoidal(f, a, b, n):
x = np.linspace(a, b, n+l)
return (b-a)/float(n)*(np.sum(f(x)) - 0.5%(£(a) + £(b)))

The code is correct, but it takes some thinking to realize why these lines compute
the formula (1). Because of the sum function, we need to adjust the summation
result such that the weight of the end points becomes correct.

Tip: Implement scalar code first - then vectorize.

It is much easier to get a scalar code, with explicit loops that mimic the
mathematical formula(s) as closely as possible, to work first. Then remove
loops by vectorized expressions and test the code against the scalar version.

High-performance computing: memory usage

The scalar implementation of the Trapezoidal rule computes one f(x) at the
time and uses very little memory, actually only 4 £loat variables. The vectorized
version, however, computes the function values at all points x (n + 1 float
objects) at once and therefore requires the storage of about n float objects.
This is a significant difference between the vectorized and scalar versions. The
vectorized version may run out of memory if we want very accurate results and
hence a large n.

High-performance computing: parallelization

An important observation for parallelization of the Trapezoidal rule is that all the
function evaluations are independent of each other so these can be performed in

17

parallel. Typically, with m compute units we can distribute int (n/m) function
evaluations to the first m — 1 units and int(n/m) + n % m to the last one. Each
unit must compute the sum of the evaluations and communicate to one master
unit or to all other units. The master or all units must then sum up all the
partial sums, subtract %(f(a) 4+ f(b)) and multiply by h to get the final answer.

Vectorized algorithms often lend themselves to automatic parallelization.
In fact, the Numba tool can automatically parallelize Numerical Python code.
Looking at the vectorized Trapezoidal implementation

X
I

np.linspace(a, b, n+l)
(b-a)/float(n)*(np.sum(f(x)) - 0.5%x(f(a) + £(b)))

and assuming that n is large, we realize that np.linspace must create the vector
on m compute units, each with its own memory. In the next expression, f (x)
leads to application of f on the piece of x that is on each compute unit. Then
np.sum creates partial sums of f(x) on each compute unit and distributes the
results to all other units. No more (distributed) vectors are involved, so the
remaining scalar operations can be carried out on every unit, and the final result
of the integral is then available on each individual compute unit.

We think it is fundamental that such reasoning is well known among students.
Traditionally, thinking about parallelism has not been in focus unless also
demanding technical implementations in terms of MPI is also taught. However,
laptops will soon be powerful parallel computing platforms, so knowing how to
write code that lend itself to easy parallelization by tools such as NumPy and
Numba is key. How parallel code is actually implemented may be pushed to a
more specialized courses.

Understanding of approximation errors

Since the asymptotic behavior of approximation errors is so fundamental for the
most common verification technique (i.e., checking convergence rates), students
should be well motivated for diving more into the mathematics behind the
various formulas they use in test functions.

https://www.youtube. com/watch?v=1n1LOxbEM3s

Overview of advanced algorithms

The Trapezoidal rule is primarily a pedagogical tool for obtaining a good under-
standing numerical integration and what integration is. For professional use, one
will apply more sophisticated algorithms, for instance algorithms that deliver an
estimate of the integral with a specified error tolerance.

In the scientific Python eco system we have the quad method for sophisticated
integration, from the famous QUADPACK Fortran library and made available in
the SciPy package. Here we integrate ffz cost dt with a relative error tolerance

of 10~12:

18

http://numba.pydata.org
https://www.youtube.com/watch?v=ln1L0xbEM3s

>>> import scipy.integrate

>>> from math import cos

>>> I, error = scipy.integrate.quad(cos, -2, 2, epsrel=1E-12)
>>> 1

1.8185948536513632

>>> error

2.4124935390890847e-14

Uncertainty quantification

We want to compute [= faz costdt, but a is an uncertain parameter. Suppose
a can be modeled as a normally distributed stochastic variable with mean -2
and standard deviation 0.2. What is the corresponding uncertainty in 17 The
simplest statistics reflecting the uncertainty of I is the mean and the standard
deviation. Monte Carlo simulation is the simplest method for computing the
uncertainty.

from Trapezoidal_vec import Trapezoidal
import numpy as np
100000 # Monte Carlo samples
a = np.random.normal(loc=-2, scale=0.2, size=N) # I samples of a
I = np.zeros(N) # Responses (integrals)
for i in range(N):
I[i] = Trapezoidal(np.cos, alil, 2, n=1000)
print ’Integral of cos(t) from t=-2 to t=2:’, np.sin(2) - np.sin(-2)
print ’Mean value of uncertain integral:’, np.mean(I)
print ’Standard deviation of uncertain integral:’, np.std(I)

The output becomes

Integral of cos(t) from t=-2 to t=2: 1.81859485365
Mean value of uncertain integral: 1.80044133926
Standard deviation of uncertain integral: 0.0856614641125

Extended exercise

Compute the following integrals with the Midpoint rule, the Trapezoidal rule,

and Simpson’s rule:
/sin:z:dx = 2,
0
< 1 2
e ¥dr = 1,
[oo \/27T
1
/3x2dx = 1,
0

In11
/ e“der = 10,
0

13
/f\/de = 1.
O 2

19

For each integral, write out a table of the numerical error for the three methods
using a n function evaluations, where n varies as n =2 + 1, k = 1,2, ...,12.

A Python solution

In the extended problem, Solution 1 is obviously inferior because we need to
apply, e.g., the Trapezoidal rule to five different integrand functions for 12
different n values. Then it only makes sense to implement the rule in a separate
function that can be called 60 times.

Similarly, a mathematical function to be integrated is needed in three different
rules, so it makes sense to isolate the mathematical formula for the integrand in
a function in the language we are using.

We can briefly sketch a compact and smart Python code, in a single file, that
solves the extended problem:

def f1(x):
return sin(x)

def £2(x):
return 1/sqrt(2)*exp(-x**2)

def f5(x):
return 3/2.0*sqrt(x)

def Midpoint(f, a, b, n):
def Trapezoidal(f, a, b, n):
def Simpson(f, a, b, n):

problems = [(f1, 0, pi), # list of (function, a, b)
(f2, -5, 5),
(£3, 0, 1]

methods = (Midpoint, Trapezoidal, Simpson)

result = []

for method in methods:

for func, a, b in problems:
for k in range(1,13):

n = 2xxk + 1
I = method(func, a, b, n)
result.append((I, method.__name__, func.__name

n))

P}

write out results, nicely formatted:
for I, method, integrand, n in result:
print ’%-20s, %-3s, n=)5d, I=Jg’ % (I, method, integrand, n)

Note that since everything in Python is an object that can be referred to by
a variable, it is easy to make a list methods (list of Python functions), and a
list problems where each element is a list of a function and its two integration

20

limits. A nice feature is that the name of a function can be extracted as a string
in the function object (name with double leading and trailing underscores).

To summarize, Solution 2 or 3 can readily be used to solve the extended
problem, while Solution 1 is not worth much. In courses with many very simple
exercises, solutions of type 1 will appear naturally. However, published solutions
should employ approach 2 or 3 of the mentioned reasons, just to train students
to think that this is a general mathematical method that I should make reusable
through a function.

Along with the code above there should be a file test_integration_methods.py
containing test functions for the various rules. The error formula for Simpson’s
rule contains f”/, so one can integrate a third-degree polynomial in a test and
expect an error about the machine precision. The Midpoint rule integrates linear
functions exactly. For testing of convergence rates, the Trapezoidal and Midpoint
rules have errors behaving as n~2, while the error in Simpson’s rule goes like
n4.

Solution 4: a Java OO program

Introductory courses in computer programming, given by a computer science
department, often employ the Java language and emphasize object-oriented
programming. Many computer scientists argue that it is better to start with
Java than Python or (especially) Matlab. But how well is Java suited for
introductory numerical programming?

Let us look at our first integration example, now to be solved in Java. Solution
1 is implemented as a simple main method in a class, with a code that follows
closely the displayed Matlab code. However, students are in a Java course trained
in splitting the code between classes and methods. Therefore, Solution 2 should
be an obvious choice for a Java programmer. However, it is not possible to
have stand-alone functions in Java, functions must be methods belonging to a
class. This implies that one cannot transfer a function to another function as an
argument. Instead one must apply the principles of object-oriented programming
and implement the function argument as a reference to a superclass. To call the
“function argument”; one calls a method via the superclass reference. The code
below provides the details of the implementation:

import java.lang.*;

interface Func { // superclass for functions f(z)
public double f (double x); // default empty implementation

class f1 implements Func {

public double f (double t)

{ return Math.exp(-Math.pow(t, 4)); }
}

class Trapezoidal {
public static double integrate
(Func f, double a, double b, int n)

21

double h = (b-a)/((double)n);
double s = 0.5%(f.f(a) + £.f(b));
int i;

for (i =1 <= n-1; i++) {

.
s = s + f.f(a+i*h);
}

return hxs;

}

class MainProgram {
public static void main (String argv[])

{
double a = -2;
double b = 2;
int n = 1000;
double result = Trapezoidal.integrate(f, a, b, n);
System.out.println(result);
}

}

From a computer science point of view, this is a quite advanced solution since it
relies on inheritance and true object-oriented programming. From a mathematical
point of view, at least when compared to the Matlab and Python versions, the
code looks unnecessarily complicated. Many introductory Java courses do not
cover inheritance and true object-oriented programming, and without mastering
these concepts, the students end up with Solution 1. On this background, one
may argue that Java is not very suitable for implementing this type of numerical
algorithms.

Conclusions

Simple exercises have pedagogical advantages, but some disadvantages with
respect to programming, because the programs may easily become too specialized.
In such cases, the exercise may explicitly ask the student to divide the program
into functions and make general mathematical methods available as general,
reusable functions for a set of problems. This requirement can be motivated by
an extended exercise where a piece of code are needed many times, typically
that several methods are applied to several problems.

Especially when using Matlab, students may be too lazy to use functions
when this is not explicitly required. The result is that testing becomes absent
and that extensions to more complicated cases get more error-prone.

Final remark. Linear algebra is an excellent example where the traditional
mathematical recipes (algorithms) taught in the standard linear algebra courses
all over the world are not compatible with how linear algebra calculations are
carried out in the real world. Students are drilled in computing the inverse of
2 x 2 and 3 x 3 matrices, computing determinants using co-factors, computing

22

eigenvalues using the characteristic polynomial, and so on. In the real world,
however, golden rules of linear algebra go instead as follows:

e Never compute the matrix inverse.

e Never compute a determinant using co-factors.

e Never compute eigenvalues using the characteristic polynomial.
e Never compute det A to decide if A is approximately singular.

e Never compute the eigenvalues of A to determine whether it is symmetric
positive definite. Rather compute the Cholesky factorization; if successful,
A is symmetric and positive definite.

e Never compute AT A when solving least squares problems.

What is the impact of such rules on the teaching of introductory linear algebra?

23

