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This report investigates the accuracy of three finite difference schemes for the
ordinary differential equation u′ = −au with the aid of numerical experiments.
Numerical artifacts are in particular demonstrated.
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1 Mathematical problem
We address the initial-value problem

u′(t) = −au(t), t ∈ (0,T ], (1)
u(0) = I, (2)

where a, I, and T are prescribed parameters, and u(t) is the unknown function
to be estimated. This mathematical model is relevant for physical phenomena
featuring exponential decay in time, e.g., vertical pressure variation in the
atmosphere, cooling of an object, and radioactive decay.

2 Numerical solution method
We introduce a mesh in time with points 0 = t0 < t1 · · · < tNt = T . For
simplicity, we assume constant spacing ∆t between the mesh points: ∆t =
tn − tn−1, n = 1, . . . ,Nt. Let un be the numerical approximation to the exact
solution at tn.
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The θ-rule [1] is used to solve (1) numerically:

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un,

for n = 0, 1, . . . ,Nt − 1. This scheme corresponds to

• The Forward Euler1 scheme when θ = 0

• The Backward Euler2 scheme when θ = 1

• The Crank-Nicolson3 scheme when θ = 1/2

3 Implementation
The numerical method is implemented in a Python function [2] solver (found
in the model.py4 Python module file):

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

4 Numerical experiments
A set of numerical experiments has been carried out, where I, a, and T are fixed,
while ∆t and θ are varied. In particular, I = 1, a = 2, ∆t = 1.25, 0.75, 0.5, 0.1.
Figure 1 contains four plots, corresponding to four decreasing ∆t values. The red
dashed line represent the numerical solution computed by the Backward Euler
scheme, while the blue line is the exact solution. The corresponding results for
the Crank-Nicolson and Forward Euler methods appear in Figures 2 and 3.

1http://en.wikipedia.org/wiki/Forward_Euler_method
2http://en.wikipedia.org/wiki/Backward_Euler_method
3http://en.wikipedia.org/wiki/Crank-Nicolson
4http://bit.ly/29ayDx3
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Figure 1: The Backward Euler method for decreasing time step values.
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Figure 2: The Crank-Nicolson method for decreasing time step values.
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Figure 3: The Forward Euler method for decreasing time step values.
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5 Error vs ∆t

How the error

En =

(∫ T

0
(Ie−at − un)2dt

) 1
2

varies with ∆t for the three numerical methods is shown in Figure 4.

Observe:
The data points for the three largest ∆t values in the Forward Euler
method are not relevant as the solution behaves non-physically.
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Figure 4: Variation of the error with the time step.

The E numbers corresponding to Figure 4 are given in the table below.

∆t θ = 0 θ = 0.5 θ = 1
1.25 7.4630 0.2161 0.2440
0.75 0.6632 0.0744 0.1875
0.50 0.2797 0.0315 0.1397
0.10 0.0377 0.0012 0.0335
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Summary

1. θ = 1: E ∼ ∆t (first-order convergence).

2. θ = 0.5: E ∼ ∆t2 (second-order convergence).

3. θ = 1 is always stable and gives qualitatively corrects results.

4. θ = 0.5 never blows up, but may give oscillating solutions if ∆t
is not sufficiently small.

5. θ = 0 suffers from fast-growing solution if ∆t is not small
enough, but even below this limit one can have oscillating
solutions (unless ∆t is sufficiently small).
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