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This report investigates the accuracy of three finite difference schemes for
the ordinary differential equation u′ = −au with the aid of numerical exper-
iments. Numerical artifacts are in particular demonstrated.
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1 Mathematical problem

We address the initial-value problem

u′(t) = −au(t), t ∈ (0, T ], (1)
u(0) = I, (2)
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where a, I, and T are prescribed parameters, and u(t) is the unknown function
to be estimated. This mathematical model is relevant for physical phenomena
featuring exponential decay in time, e.g., vertical pressure variation in the at-
mosphere, cooling of an object, and radioactive decay.

2 Numerical solution method

We introduce a mesh in time with points 0 = t0 < t1 · · · < tNt
= T . For

simplicity, we assume constant spacing ∆t between the mesh points: ∆t =
tn − tn−1, n = 1, . . . , Nt. Let un be the numerical approximation to the exact
solution at tn.

The θ-rule [1] is used to solve (1) numerically:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un,

for n = 0, 1, . . . , Nt − 1. This scheme corresponds to

• The Forward Euler scheme when θ = 0

• The Backward Euler scheme when θ = 1

• The Crank-Nicolson scheme when θ = 1/2

3 Implementation

The numerical method is implemented in a Python function [2] solver (found
in the model.py Python module file):

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

4 Numerical experiments

A set of numerical experiments has been carried out, where I, a, and T are
fixed, while ∆t and θ are varied. In particular, I = 1, a = 2, ∆t = 1.25, 0.75, 0.5, 0.1.
Figure 1 contains four plots, corresponding to four decreasing ∆t values. The
red dashed line represent the numerical solution computed by the Backward

http://en.wikipedia.org/wiki/Forward_Euler_method
http://en.wikipedia.org/wiki/Backward_Euler_method
http://en.wikipedia.org/wiki/Crank-Nicolson
http://bit.ly/29ayDx3
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Euler scheme, while the blue line is the exact solution. The corresponding re-
sults for the Crank-Nicolson and Forward Euler methods appear in Figures 2
and 3.
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Figure 1: The Backward Euler method for decreasing time step values.
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Figure 2: The Crank-Nicolson method for decreasing time step values.
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Figure 3: The Forward Euler method for decreasing time step values.
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5 Error vs ∆t

How the error

En =
(∫ T

0
(Ie−at − un)2dt

) 1
2

varies with ∆t for the three numerical methods is shown in Figure 4.

Observe:
The data points for the three largest ∆t values in the Forward Eu-

ler method are not relevant as the solution behaves non-physically.
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Figure 4: Variation of the error with the time step.

The E numbers corresponding to Figure 4 are given in the table below.

∆t θ = 0 θ = 0.5 θ = 1
1.25 7.4630 0.2161 0.2440
0.75 0.6632 0.0744 0.1875
0.50 0.2797 0.0315 0.1397
0.10 0.0377 0.0012 0.0335
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Summary

1. θ = 1: E ∼ ∆t (first-order convergence).

2. θ = 0.5: E ∼ ∆t2 (second-order convergence).

3. θ = 1 is always stable and gives qualitatively corrects results.

4. θ = 0.5 never blows up, but may give oscillating solutions if ∆t
is not sufficiently small.

5. θ = 0 suffers from fast-growing solution if ∆t is not small
enough, but even below this limit one can have oscillating so-
lutions (unless ∆t is sufficiently small).
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