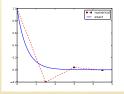
ON SCHEMES FOR EXPONENTIAL DECAY

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory¹

Department of Informatics, University of Oslo²

Jun 23, 2021



© 2021, Hans Petter Langtangen. Released under CC Attribution 4.0 license

GOAL

The primary goal of this demo talk is to demonstrate how to write talks with **DocOnce** and get them rendered in numerous HTML formats.

LAYOUT

This version utilizes beamer slides with the theme vintage.

PROBLEM SETTING AND METHODS

RESULTS

PROBLEM SETTING AND METHODS

WE AIM TO SOLVE THE (ALMOST) SIMPLEST POSSIBLE DIFFERENTIAL EQUATION PROBLEM

$$u'(t) = -au(t)$$
 (1)
 $u(0) = I$ (2)

Here,

- $t \in (0,T]$
- *a*, *I*, and *T* are prescribed parameters
- u(t) is the unknown function
- The ODE (1) has the initial condition (2)

- Much in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constan
- u^n : numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

• Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$

• u^n : numerical annue to the could solution at

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$

The heta rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule

 $u^{n+1} = \frac{1}{1 + \theta a \Delta t}$ contains the Forward Euler ($\theta = 0$), the Badaward Euler ($\theta = 1$), and the Crank Modelon ($\theta = 0.5$) schemes.

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

THE FORWARD EULER SCHEME EXPLAINED

http://youtube.com/PtJrPEIHNJw

IMPLEMENTATION

IMPLEMENTATION IN A PYTHON FUNCTION:

How to use the solver function

A COMPLETE MAIN PROGRAM

```
# Set problem parameters
I = 1.2
a = 0.2
T = 8
dt = 0.25
theta = 0.5
|\pause|
```

```
from solver import solver, exact_solution
u, t = solver(I, a, T, dt, theta)
|\pause|
```

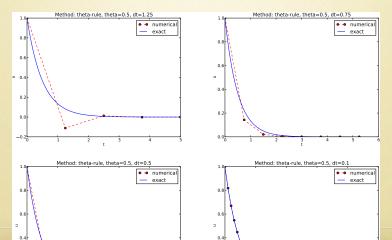
import matplotlib.pyplot as plt plt.plot(t, u, t, exact_solution) plt.legend(['numerical', 'exact']) plt.show()

PROBLEM SETTING AND METHODS

RESULTS

RESULTS

THE CRANK-NICOLSON METHOD SHOWS OSCILLATORY BEHAVIOR FOR NOT SUFFICIENTLY SMALL TIME STEPS, WHILE THE SOLUTION SHOULD BE MONOTONE



THE ARTIFACTS CAN BE EXPLAINED BY SOME THEORY

$u^n = A^n, \quad A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$

Key results

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Concluding remarks:

Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Concluding remarks:

Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS: Only the Backward Euler scheme is guaran

qualitatively correct results

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Et
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS: Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS: Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

Concluding remarks:

Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.