## On Schemes for Exponential Decay

Hans Petter Langtangen ${ }^{1,2}$

$$
\text { Center for Biomedical Computing, Simula Research Laboratory }{ }^{1}
$$

$$
\text { Department of Informatics, University of Oslo } 0^{2}
$$

Jun 23, 2021


## Problem setting and methods



Goal

The primary goal of this demo talk is to demonstrate how to write talks with DocOnce and get them rendered in numerous HTML
formats.
Layou
This version utilizes beamer slides with the theme red_plain.

We aim to solve the (almost) simplest possible differential equation problem
$u^{\prime}(t)=-a u(t)$
(1)
(2)

$$
u(0)=1
$$

Here,

- $t \in(0, T]$
a, $I$, and $T$ are prescribed
parameters

- $u(t)$ is the unknown function
- The ODE (1) has the initial condition (2)

The ODE problem is solved by a finite difference scheme
The Forward Euler scheme explained

Implementation

## Implementation in a Python function

def solver( $T$, $T$, dt, theta)
"Solve $u=-a * u, u(0)=1$, for $t$ in ( $0, T]$; step: $d t$.""


$=1$ inspace $(0, \mathrm{~T}, \mathrm{~N}+1) \quad \#$ time mesh

 return $u, t$


The Crank-Nicolson method shows oscillatory behavior for not sufficiently small time steps, while the solution should be monotone


A complete main program
\# Set problem parameters
$\#$ Set pr
$\mathrm{H}=1.2$
$\mathrm{a}=0.2$
$\mathrm{~T}=8$
dt $=0.25$
theta $=0.5$
$\mid \backslash$ pause $\mid$
from solver import solver, exact_solutio
from solver import solver, exact_s
thensolver(I, a, $\mathrm{T}, \mathrm{dt}$, theta)
$\backslash$ pausel
|pause|
 lt. show()

The artifacts can be explained by some theory
Exact solution of the scheme:

$$
u^{n}=A^{n}, \quad A=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}
$$

Key results:

- Stability: $|A|<1$

No oscillations: $A>0$
$\Delta t<1 / a$ for Forward Euler $(\theta=0)$
$\Delta t<2 /$ a for Crank-Nicolson ( $\theta=1 / 2$ )
Concluding remarks:
Only the Backward Euler scheme is guaranteed to always give qualitatively correct results.

