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Goal

The primary goal of this demo talk is to demonstrate how to write
talks with DocOnce and get them rendered in numerous HTML
formats.

Layout
This version utilizes beamer slides with the theme red_plain.

https://github.com/doconce/doconce
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We aim to solve the (almost) simplest possible differential
equation problem

u′(t) = −au(t) (1)
u(0) = I (2)

Here,

I t ∈ (0,T ]

I a, I , and T are prescribed
parameters

I u(t) is the unknown function
I The ODE (1) has the initial

condition (2)



The ODE problem is solved by a finite difference scheme

I Mesh in time: 0 = t0 < t1 · · · < tN = T

I Assume constant ∆t = tn − tn−1

I un: numerical approx to the exact solution at tn

The θ rule,

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un, n = 0, 1, . . . ,N − 1

contains the Forward Euler (θ = 0), the Backward Euler (θ = 1),
and the Crank-Nicolson (θ = 0.5) schemes.

http://en.wikipedia.org/wiki/Forward_Euler_method
http://en.wikipedia.org/wiki/Backward_Euler_method
http://en.wikipedia.org/wiki/Crank-Nicolson
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The Forward Euler scheme explained

http://youtube.com/PtJrPEIHNJw

http://youtube.com/PtJrPEIHNJw


Implementation

Implementation in a Python function:
def solver(I, a, T, dt, theta):

"""Solve u'=-a*u, u(0)=I, for t in (0,T]; step: dt."""
dt = float(dt) # avoid integer division
N = int(round(old_div(T,dt))) # no of time intervals
T = N*dt # adjust T to fit time step dt
u = zeros(N+1) # array of u[n] values
t = linspace(0, T, N+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, N): # n=0,1,...,N-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t



How to use the solver function

A complete main program
# Set problem parameters
I = 1.2
a = 0.2
T = 8
dt = 0.25
theta = 0.5
|\pause|

from solver import solver, exact_solution
u, t = solver(I, a, T, dt, theta)
|\pause|

import matplotlib.pyplot as plt
plt.plot(t, u, t, exact_solution)
plt.legend(['numerical', 'exact'])
plt.show()
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The Crank-Nicolson method shows oscillatory behavior for
not sufficiently small time steps, while the solution should
be monotone
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The artifacts can be explained by some theory

Exact solution of the scheme:

un = An, A =
1− (1− θ)a∆t

1 + θa∆t
.

Key results:

I Stability: |A| < 1
I No oscillations: A > 0
I ∆t < 1/a for Forward Euler (θ = 0)
I ∆t < 2/a for Crank-Nicolson (θ = 1/2)

Concluding remarks:
Only the Backward Euler scheme is guaranteed to always give
qualitatively correct results.
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