
DocOnce Manual

Hans Petter Langtangen1,2

Kristian Gregorius Hustad3,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

3Centre for Computing in Science Education, University of Oslo

Mar 2, 2021

Warning.

Some parts of this manual may be outdated. Please create an issue at
https://github.com/doconce/doconce to report errors.

1 What Is DocOnce?

DocOnce is a very simple and minimally tagged markup language that looks
like ordinary ASCII text, much like what you would use in an email, but the text
can be transformed to numerous other formats, including HTML, Sphinx, LATEX,
PDF, reStructuredText (reST), Markdown, MediaWiki, Creole wiki, blogger.com,
wordpress.com, Epytext, and also plain (untagged) text for email. From reST
or Markdown you can go to XML, OpenOffice, MS Word, HTML, LATEX, PDF,
DocBook, GNU Texinfo, and more.

DocOnce supports a working strategy of never duplicating information. Text
is written in a single place and then transformed to a number of different des-
tinations of diverse type: scientific reports, software manuals, books, thesis,
software source code, wikis, blog posts, emails, etc. The slogan is: “Document
once, include anywhere”.

Here are some DocOnce features:

• DocOnce addresses small and large documents containing text with much
computer source code and LATEX mathematics, where the output is de-
sired in different formats such as LATEX, PDFLATEX, Sphinx, HTML, Medi-
aWiki, blogger.com, and wordpress.com. A piece of DocOnce text can
be included in a classical science book, an ebook, a web document, and
a blog post.

c© 2021, Hans Petter Langtangen, Kristian Gregorius Hustad. Made with DocOnce

https://github.com/doconce/doconce
https://github.com/doconce/doconce

• DocOnce offers a range of HTML designs, including many Bootstrap and
Sphinx styles and solarized color schemes. A special feature is the many
styles for admonitions (boxes for warning, notice, question, etc.) in HTML
and LATEX.

• DocOnce targets large book projects where many different pieces of text
and software can be assembled in different ways and published in differ-
ent formats for different devices (see example).

• DocOnce enables authors who write for many types of media (blog posts,
wikis, LATEX manuscripts, Sphinx, HTML) using a common source lan-
guage such that lots of different pieces can easily be brought together
later to form a coherent (big) document.

• DocOnce has good support for copying computer code directly from the
source code files via regular expressions for the start and end lines.

• DocOnce first runs two preprocessors (Preprocess and Mako), which al-
low programming constructs (includes, if-tests, function calls, variables)
as part of the text. This feature makes it easy to write one text with
different flavors: long vs short text, Python vs Matlab code examples, ex-
perimental vs mature content.

• DocOnce can be converted to plain untagged text, often desirable for
email and computer code documentation.

• DocOnce markup does include tags, so the format is more tagged than
Markdown, but less than reST, and very much less than LATEX and HTML.

• Compared to the related tools Sphinx and Markdown, DocOnce allows
more types of equations (especially systems of equations with references).
It has more flexible inclusion of source code, integration of preprocessors
and special support for exercises. Finally, it produces cleaner LATEX and
HTML output.

History. The DocOnce development started in 2006 at a time when most pop-
ular markup languages used lots of tagging (LATEX, reStructuredText, HTML).
Later, almost untagged markup languages became popular, especially Mark-
down and its sisters MultiMarkdown, Pandoc-extended Markdown, and Markua.
DocOnce looks like Markdown, and is close in functionality and nature to Mul-
tiMarkdown. The advantage of DocOnce, however, is a series of features for
supporting both small and large documents (books in particular) with much
mathematics and computer code. While Markdown tools are heavily geared
toward HTML, DocOnce has strong support for LATEX since this is the domi-
nate format for books and articles on mathematical subjects. DocOnce can
also output Sphinx (not supported by Pandoc or MultiMarkdown), a format that
is very attractive for presenting scientific material and software documentation

2

http://ethanschoonover.com/solarized
http://hplgit.github.io/setup4book-doconce/doc/web/index.html
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://fletcherpenney.net/multimarkdown/
http://johnmacfarlane.net/pandoc/
https://leanpub.com/markua/

on the web. (DocOnce allows basic Markdown syntax as input, extended with
DocOnce syntax as you like.)

Disclaimer. DocOnce applies text transformations, mostly via regular expres-
sions. This is not a fool-proof method of translation compared to real parsing.
Moreover, the possibility for tweaking the layout in the DocOnce document is
obviously limited (at least compared to LATEX and HTML) since the text can be
converted to all sorts of markup languages. This disadvantage can be quite
easily compensated, however, by clever use of the programmable Mako pre-
processor used by DocOnce and by automatic editing of the generated output
(e.g., via regular expressions).

Contents

1 What Is DocOnce? 1
1.1 Demos and Documentation . 7

2 Markup Based on Special Lines 8
2.1 Heading with title and author(s) 8
2.2 Copyright . 9
2.3 Table of contents . 11
2.4 Section headings . 11
2.5 Abstract . 12
2.6 Appendix . 12
2.7 Figures . 12
2.8 Movies . 21
2.9 Copying Computer Code from Source Files 26
2.10 Inserting the Output from Operating System Commands 26
2.11 Comments . 27
2.12 Tables . 28
2.13 Lists . 30

3 Inline Tagging 32
3.1 Emphasized Words . 32
3.2 Inline Verbatim Text . 32
3.3 Links to Web Addresses . 33
3.4 Links to Mail Addresses . 33
3.5 Links to Local Files . 33
3.6 Quotes . 34
3.7 Non-Breaking Space . 35
3.8 Horizontal rule . 35
3.9 Em-dash . 35
3.10 En-dash . 36
3.11 Ampersand . 36

3

https://guides.github.com/features/mastering-markdown/

3.12 Footnotes . 36
3.13 Inline Comments . 37
3.14 Inline Comments for Editing . 38
3.15 Forced Line Breaks . 39
3.16 Inline Mathematics . 39
3.17 Cross-Referencing . 40
3.18 Generalized Cross-Referencing 41
3.19 Index . 48
3.20 Emojis . 49

4 Exercises, Problems, Projects, and Examples 49
4.1 Exercise Syntax Examples . 49
4.2 Typesetting of Exercises . 52
4.3 List of Exercises, Problems, and Projects 53
4.4 Numbering of Extra Equations in Solutions 53
4.5 Typesetting of solutions to exercises 54
4.6 Extracting Selected Exercises in a Separate Document 56
4.7 Extracting Exercises as Stand-Alone Documents 56
4.8 Example of an Exercise . 58

5 Other Environments 61
5.1 Blocks of Verbatim Computer Code 61
5.2 LATEX Blocks of Mathematical Text 67
5.3 Macros (Newcommands) . 71
5.4 Writing Guidelines (Especially for LATEX Users!) 72
5.5 Typesetting of Algorithms . 75
5.6 Admonitions . 76
5.7 User-Defined Environments . 80

6 Bibliography (References) 85
6.1 Importing your data to the Publish database 85
6.2 Requirements to input data . 86
6.3 Adding new references to the database 86
6.4 Exporting the database . 86
6.5 Referring to publications . 86
6.6 Specifying the Publish database 87
6.7 LATEX Bibliography Style . 87

7 Preprocessing and Postprocessing 88
7.1 The Preprocess and Mako Preprocessors 88
7.2 Splitting Documents into Smaller Pieces 90

8 Writing Slides 92
8.1 Overview . 93
8.2 Slide Elements . 94
8.3 HTML5 Slides . 96

4

8.4 LATEX Beamer Slides . 96

9 Support for non-English 97

10 Misc 97
10.1 Missing Features . 97
10.2 Git .gitignore File . 98
10.3 Emacs DocOnce Formatter . 99
10.4 Atom Syntax Highlighting for DocOnce 99

11 Mako Programming 100
11.1 The Basics of Mako . 100
11.2 Debugging Python code in Mako 101
11.3 Example: Nomenclature functionality 102
11.4 Example: Executing Python and using SymPy Objects in LATEX . 104
11.5 Example: Extending Tables to Handle Figures 105
11.6 Example: Defining a Theorem Environment 110
11.7 Tools for Writing DocOnce Documents 112
11.8 Debugging . 112

12 From DocOnce to Other Formats 112
12.1 Writing a Makefile . 113
12.2 Generating a Makefile . 114
12.3 Spell checking . 115
12.4 Preprocessing . 115
12.5 Removal of Inline Comments . 116
12.6 Notes . 117
12.7 Demo of Different Formats . 117
12.8 Tweaking the DocOnce Output 117
12.9 Useful Options for doconce format 117

13 HTML 118
13.1 Basic HTML Output . 118
13.2 Typesetting of Code . 119
13.3 Handling of Movies . 119
13.4 HTML Styles . 119
13.5 HTML templates . 119
13.6 Splitting HTML documents . 120
13.7 URL to files hosted on GitHub . 121
13.8 Other HTML options . 121
13.9 Blog Posts . 123

14 Pandoc and Markdown 124
14.1 Markdown to HTML conversion 125
14.2 Strict Markdown . 125
14.3 GitHub-flavored Markdown . 126
14.4 MultiMarkdown . 127

5

14.5 Strapdown rendering of Markdown text 127
14.6 Using Pandoc to go from LATEX to MS Word or HTML 127

15 LATEX 127
15.1 Overview . 128
15.2 The old ptex2tex step . 128
15.3 LaTeX-PDF: Generate LATEX (Step 1) 129
15.4 LaTeX-PDF: Edit the LATEX File (Step 2, Optional) 134
15.5 LaTeX-PDF: Generate PDF (Step 3) 134
15.6 XeLaTeX . 135
15.7 From PDF to e-book formats . 135
15.8 Microsoft Word or LibreOffice . 135

16 Jupyter (IPython) Notebooks 135
16.1 Hidden code blocks . 135
16.2 Displaying code as plain text instead of executable cells 136
16.3 Figures . 136
16.4 Movies . 137
16.5 Admonitions . 137
16.6 References to an External Textbook 137
16.7 Conversion from Notebook Back to DocOnce 137

17 Matlab Notebooks 138

18 Plain ASCII Text 138

19 reStructuredText 139

20 Sphinx 139
20.1 The Basic Steps . 139
20.2 Links . 140
20.3 Themes . 141
20.4 RunestoneInteractive books . 143
20.5 The manual Sphinx procedure 143

21 Wiki Formats 145

22 Google Docs 145

23 Options for the doconce commands 146
23.1 doconce format command-line options 146

24 Installation of DocOnce and its Dependencies 150
24.1 Dependencies . 150

25 Basic Parsing Ideas 154
25.1 Typesetting of Function Arguments, Return Values, and Variables 155

6

26 References 156

References 156

Index 158

1.1 Demos and Documentation

This guide is for the experienced DocOnce writer!

Do not read the detailed descriptions of DocOnce syntax that follows (this
is a manual!) before you have read the tutorial and played a little around
with a simple document.

The primary demo for what can be achieved as output from DocOnce doc-
uments regards a little scientific report that is compiled to a range of various
output documents. A version of that web page contains the specific compilation
commands to create each of the output demonstrations.

There is also a demo on the many different ways one can create slides.

Write DocOnce documents in a text editor with monospace font!

Some DocOnce constructions are sensitive to whitespace (indentation in
lists is a primary example), so you must use a text editor with monospace
font (also known as verbatim text). Never use fonts like Arial or Helvetica.
(Other popular markup languages such as Sphinx and Markdown are also
sensitive to whitespace and require a monospace font in the text editor.)

Tip: Read the FAQ!

Over the years, a lot of tips and problems have been collected in the
Troubleshooting and FAQ document, available in Sphinx, HTML, and PDF.
The FAQ and this manual are the two key references for how to make use
of DocOnce.

The DocOnce tutorial (available in Sphinx, HTML, and PDF formats) has its
source code in the GitHub repository for DocOnce, more precisely in the file

doc/src/tutorial/tutorial.do.txt

7

http://doconce.github.io/teamods/writing_reports/_static/report/do.txt.html
http://doconce.github.io/teamods/writing_reports/index.html
http://doconce.github.io/teamods/writing_reports/index.html
http://doconce.github.io/doconce/doc/pub/slides/demo/index.html
http://doconce.github.io/doconce/doc/pub/trouble/html/index.html
http://doconce.github.io/doconce/doc/pub/trouble/trouble.html
http://doconce.github.io/doconce/doc/pub/trouble/trouble.pdf
http://doconce.github.io/doconce/doc/pub/tutorial/html/index.html
http://doconce.github.io/doconce/doc/pub/tutorial/tutorial.html
http://doconce.github.io/doconce/doc/pub/tutorial/tutorial.pdf

One can compare this source with the output in HTML, Sphinx, and PDF. The
make.sh script in the same directory shows in detail how the various versions
were compiled.

The DocOnce source of the current manual is also found at the GitHub
repository for DocOnce, in the file

doc/src/manual/manual.do.txt

You can compare this source with the available output in HTML, Sphinx, and
PDF.

2 Markup Based on Special Lines

The DocOnce markup language has a concept called special lines. Such lines
starts with a markup at the very beginning of the line and are used to mark doc-
ument title, authors, date, sections, subsections, paragraphs, figures, movies,
lists, etc.

2.1 Heading with title and author(s)

Lines starting with TITLE:, AUTHOR:, and DATE: are optional and are used to
identify the title of the document, the authors, and the date. The title is treated
as the rest of the line, so is the date, but the author text consists of the name
and associated institution(s) with the syntax

AUTHOR: name at institution1 & institution2 & institution3

The at with surrounding spaces is essential for adding information about institu-
tion(s) to the author name, and the and (ampersand) with surrounding spaces
is essential as delimiter between different institutions. An email address can
optionally be included, using the syntax

AUTHOR: name Email: somename@site.net at institution1 & institution2

Multiple authors require multiple AUTHOR: lines. All information associated with
TITLE: and AUTHOR: keywords must appear on a single line. Here is an exam-
ple:

TITLE: On an Ultimate Markup Language
AUTHOR: H. P. Langtangen at Center for Biomedical Computing, Simula Research Laboratory & Dept. of Informatics, Univ. of Oslo
AUTHOR: Kaare Dump Email: dump@cyb.space.com at Segfault, Cyberspace Inc.
AUTHOR: A. Dummy Author
DATE: November 9, 2016

Note how one can specify a single institution, multiple institutions (with & as sep-
arator between institutions), or no institution. In some formats (including rst
and sphinx) only the author names appear. Some formats have “intelligence”
in listing authors and institutions, e.g., the plain text format:

8

http://doconce.github.io/doconce/doc/pub/tutorial/tutorial.html
http://doconce.github.io/doconce/doc/pub/tutorial/html/index.html
http://doconce.github.io/doconce/doc/pub/tutorial/tutorial.pdf
http://doconce.github.io/doconce/doc/pub/manual/manual.html
http://doconce.github.io/doconce/doc/pub/manual/html/index.html
http://doconce.github.io/doconce/doc/pub/manual/manual.pdf

Hans Petter Langtangen [1, 2]
Kaare Dump (dump@cyb.space.com) [3]
A. Dummy Author

[1] Center for Biomedical Computing, Simula Research Laboratory
[2] Department of Informatics, University of Oslo
[3] Segfault, Cyberspace Inc.

Similar typesetting is done for LATEX and HTML formats.
The current date can be specified as today.

2.2 Copyright

A copyright notice can be given as part of the AUTHOR: command. The syntax
is

{copyright,year1-year2|license}

where year1-year2 represents the year(s) and license represents the type of
license (e.g., Creative Commons license) if that applies. The year and license
parts can be left out. In that case, the current year is used, and no license ap-
pears. Note that the year and the license must be identical in all copyright spec-
ifications for all authors who claim copyright! (Otherwise, an error message is
issued.) The {copyright...} specification can appear after the author’s name
(and email address) and/or after an organization’s name (see examples below).

The syntax of the year1-year part goes as follows:

• A single year: 2012.

• A range: 2006-2010. Up to the current year is specified by 2005-present.
Any attempt to use an upper limit into the future will be replaced by
present, e.g., 2001-2100 becomes 2001-present.

• A single year: date, which fetches the year from the DATE: field in the
DocOnce document.

The syntax of the license part is flexible:

• Any formulation can be given. For example,
{copyright|This work is released under an MIT license}.

• Standardized short forms for Creative Commons (CC) licenses are avail-
able. For example, CC BY, which means a CC Attribution license. BY can
be replaced by BY-NC (Attribution-NonCommercial) and other abbrevia-
tions from https://creativecommons.org/licenses/. The command-
line option --CC_license= is used to provide a template for embedding
the spelled out name of the abbreviated CC license. By default this tem-
plate reads Released under a CC %s 4.0 license, where %s is to be
replaced by the license name. A common value is
--CC_license="This work is released under the Creative Commons %s 4.0 license".

9

https://creativecommons.org/licenses/

How the copyright is typeset depends on the format:

• LATEX: The copyright appears as a footer on all pages (typeset with the
\fancyfoot[C] command from the fancyhdr package). The command-
line option --latex_copyright=titlepages leads to a copyright state-
ment in the footer of the titlepage and (for books) the first page of each
chapter.

• Sphinx: The copyright is provided as the copyright variable in conf.py
and appears in the footer according to the chosen theme.

• HTML: The copyright appears at the bottom of all pages (right before the
</body> tag).

• Other formats: A copyright line is inserted after the date.

Here are some examples on specifying copyright.

AUTHOR: Joe Doe Email:joe.doe@somemail.com {copyright}
AUTHOR: Jane Doe {copyright}

Output becomes “Copyright 2015, Joe Doe, Jane Doe” (if the present year is
2015).

AUTHOR: Joe Doe {copyright,2001-present}

Output becomes “Copyright 2001-2015, Joe Doe” (if the present year is 2015).

AUTHOR: Joe Doe {copyright,2001-2010|CC BY}
AUTHOR: Jane Doe Email:jd@kk.org {copyright,2001-2010|CC BY}

Output becomes “Copyright 2001-2010, Joe Doe, Jane Doe. Released under
CC Attribution 4.0 license”. One can provide the option \\ --CC_license="This work is released under the Creative Commons %s 4.0 license.",
and the output becomes “Copyright 2001-2010, Joe Doe, Jane Doe. This work
is released under the Creative Commons Attribution 4.0 license.”

AUTHOR: Joe Doe {copyright} at Digital Company {copyright}
AUTHOR: Jane Doe

In this case, an author and an institution (but not the second author) hold the
copyright. The output is typically “Copyright 2015, Joe Doe, Digital Company”.
Below, two institutions but no authors hold the copyright:

AUTHOR: Joe Doe at Digital Company {copyright,2015|CC BY}
AUTHOR: Jane Doe at Analog Company {copyright,2015|CC BY}

The output becomes “Copyright 2015, Digital Company, Analog Company. Re-
leased under CC Attribution 4.0 license”.

10

2.3 Table of contents

A table of contents can be generated by the line

TOC: on

This line is usually placed after the DATE: line. The value off turns off the table
of contents.

The depth of the table of contents is dictated by the command-line op-
tion --toc_depth=, which is 2 by default, meaning that sections and subsec-
tions are included, but not subsubsections. When making Sphinx documents,
toc_depth= is a command-line option for for the doconce sphinx_dir com-
mand (and not doconce format).

2.4 Section headings

Section headings are recognized by being surrounded by equal signs (=) or
underscores before and after the text of the headline. Different section levels
are recognized by the associated number of underscores or equal signs (=):

• 9 = characters for chapters

• 7 = characters for sections

• 5 = characters for subsections

• 3 = characters for subsubsections

• 2 underscores (only! - it looks best) for paragraphs (paragraph heading
will be inlined)

Headings can be surrounded by as many blanks as desired, but the first =
must start in column 1 and there must be one blank (space) on each side
of the heading, between the heading and the = signs. Here are examples of
headings:

======= Example on a Section Heading =======

The running text goes here.

===== Example on a Subsection Heading =====

The running text goes here.

=== Example on a Subsubsection Heading ===

The running text goes here.

__A Paragraph.__ The running text goes here.

11

2.5 Abstract

DocOnce also supports abstracts. The syntax is like an ordinary paragraph
with heading Abstract, Summary, or Preface, but the text must be followed by
a

• section or paragraph heading

• table of contents (TOC:)

• date (DATE:)

Everything up to the first heading, table of contents, or date is taken as the
abstract. For articles, the abstract is placed after the date, but before the table
of contents or the first ordinary heading. For books one may insert the abstract
before the date to make it appear on the first page.

Here are examples on an abstract and some type of ending text (section
headings, table of contents, or date).

__Abstract.__ This abstract
lasts up to the section heading.

======= Here Is the First Section Heading =======

or

__Summary.__
This is
a summary.

Even with two paragraphs. It lasts
until the table of contents.

TOC: on

In books we may place the summary before DATE

TITLE: Some Title
AUTHOR: Some Author

__Summary.__ Here is the backmatter
promotion text for this book, appearing
on the front page...

DATE: today

2.6 Appendix

Appendix is supported too: just let the heading start with “Appendix: ” This
affects only latex output, where the appendix formatting is used - all other
formats just leave the heading as it is written.

2.7 Figures

Basic syntax. Figures are recognized by the special line syntax

12

FIGURE:[filename, width=600 frac=0.8] caption

The filename can be without extension, and DocOnce will search for an appro-
priate file with the right extension. If the extension is wrong, say .pdf when
requesting an HTML format, DocOnce tries to find another file, and if not, the
given file is converted to a proper format (using ImageMagick’s convert utility).

Warning.

Note the comma between the filename and the figure size specifications
and that there should be no space around the = sign. This syntax must
be strictly followed.

Note also that, like for TITLE: and AUTHOR: lines, all information re-
lated to a figure line must be written on the same line. Introducing new-
lines in a long caption will destroy the formatting (only the part of the
caption appearing on the same line as FIGURE: will be included in the
formatted caption).

The height, width, and frac keywords can be included if desired and may
have effect for some formats: the height and width are used for output in the
formats html, rst, sphinx, while the frac specification is used for latex and
pdflatex to specify the width of the image as a fraction of the text width.

Figure Placement. In web formats (html, sphinx, ipynb, matlabnb, wikis),
the FIGURE: command is replaced by an img tag exactly where the FIGURE:
appears in the document. LATEX, however, will normally place the figure at a
different location. The generated LATEX code applies

\begin{figure }[!ht] % my: fig

i.e., we use the “here” option [!ht] to recommend a placement as near the
FIGURE: command as possible. One can autoedit the .tex file and modify the
figure environment options, e.g.,

Terminal> doconce replace ’{figure}[!ht]’ ’{figure}[t]’ mydoc.tex

The above command will change all [!ht] options to [t] (top). Given that the
label is printed at the same line as \begin{figure}, a specific figure can be
edited:

Terminal> doconce subst ’{figure}[!ht] .+my:fig’ \
’{figure}[!h] % my:fig’ mydoc.tex

Of greater influence than options like [ht], [h], etc. is the LATEX code found in
the preamble:

13

\setcounter{topnumber }{2}
\setcounter{bottomnumber }{2}
\setcounter{totalnumber }{4}
\renewcommand {\ topfraction }{0.95}
\renewcommand {\ bottomfraction }{0.95}
\renewcommand {\ textfraction }{0}
\renewcommand {\ floatpagefraction }{0.75}
% floatpagefraction must always be less than topfraction !
\usepackage[section]{ placeins} % flush all figs before next

section

These values can be manipulated to fine-tune how LATEX places figures.

Figure References. Suppose we have the DocOnce code

The results are presented in Figure ref{myfig}.

FIGURE:[myfigfile, width=400 frac=0.8] Results for $a=2$. label{myfig}

Different formats will display the figure reference differently. In LATEX, Do-
cOnce generates the code ... in Figure~\ref{myfig}, which reads “... in
Figure 5” (article) or “... in Figure 5.2” (book). Requesting the varioref
package (with --latex_packages=varioref) makes DocOnce emit \vref ref-
erences and then the above reference becomes in Figure~\ref{myfig}, which
reads “... in Figure 5 on page 67”. However, if Figure 5 appears on the present
page where the reference is done, the page reference is left out, and one can
read just “in Figure 5”.

Sphinx applies the caption as the name of the figure, so the reference reads
“... in Figure Results for .”, and the caption/name is a link to the figure. Note
that Sphinx strips off the mathematics from the caption. In HTML, figures
are given numbers, so the reference reads “... in Figure 3”, with the figure
number as a link to the place in the document where the FIGURE: command
was located. The IPython/Jupyter notebook format makes a Markdown link:
... in [Figure](#myfig), where myfig is an anchor such one can click on
Figure. The plain text format displays the reference as “... in Figure ??.”. Wiki
formats show “... in Figure myfig.”. So to summarize, figure references work
best in LATEX, HTML, and Sphinx. When using other formats, figure references
with labels should be avoided.

Inline Figures. The figure caption is optional. If omitted, the figure appears
“inline” in the text without any figure environment in LATEX formats or HTML.
An inline figure is handy in LATEX since it appears exactly where the FIGURE:
command appears (figures with captions are encapsulated in the LATEX figure
environment and become floating objects whose placement is up to LATEX do
decide).

14

Tip: use linebreak to insert space around inline figures.

Sometimes inline figures (FIGURE line without caption) get squeezed into
the text. You can add vertical space in LATEX and HTML by inserting sev-
eral lines with <linebreak>.

Figure 1: A wave.

Choosing the Figure Format. For each output format, there is a preference
for the type of graphics file to use. That is, for HTML, for instance, we can
accept many types of graphics formats. If we specify the extension as part of
the filename, DocOnce will try to find that specific format. If not found, it will
convert whatever can be used to some format suitable for HTML. It is highly
recommended to prepare figures in different formats manually and not rely on
automatic conversion by DocOnce – that gives the best quality. For example,
plots should always be prepared in both PDF and PNG formats.

If we just specify the filestem of the figure file, DocOonce will pick the most
appropriate version of the file for given output format. For HTML there is a
preference for .svg, thereafter comes .html (typically Bokeh plots), then .png,
then gif, then .jpg. Here is the preference list for the various formats:

• latex: .eps, .ps

15

• pdflatex: .pgf, .tikz, .pdf, .png, .jpg, .jpeg

• html: .svg, .html, .png, .gif, .jpg, .jpeg

• sphinx: .png, .gif, .jpg, .jpeg

• pandoc: .png, .gif, .jpg, .jpeg, .tif, .tiff, .pdf

Other formats that can display graphics will prefer .png files.

Handling Variable Figure Paths. Figure files are usually located in some di-
rectory. Sometimes one needs to compile the DocOnce source file(s) from
different directories, and then the path to figure files changes. For exam-
ple, think of a master DocOnce file that includes different sections whose Do-
cOnce source files are located in different directories. If you want to compile
a section as stand-alone document, you have to do that from the subdirec-
tory for that section. The path to a common directory for figures may then be
../fig/myfig.png, while for the master document in the parent directory, the
corresponding path is fig/myfig.png.

The simplest way out of this problem is to use the --figure_prefix= command-
line option to set a path prefix for the figure filename. When compiling a section
in a subdirectory one sets --figure_prefix=../fig while in the parent direc-
tory one needs --figure_prefix=fig to compile the master document. In the
DocOnce source file one has FIGURE: [myfig, width=...].

A more manual method is to introduce a Mako variable FIGPREFIX that is set
on the command line as part of the doconce format command. The FIGPREFIX
variable holds a prefix for the path to the figure. In our example one would write

FIGURE: [${FIGPREFIX}/myfig, width=500 frac=0.8] caption label{my:fig}

and set FIGPREFIX=../fig after the doconce format ... command if one
compiles a section, or set FIGPREFIX=fig if compiling the master document.

Figures with Subfigures. Combining several image files into one, in a table
fashion, can be done by the montage program from the ImageMagick suite:

montage -background white -geometry 100% -tile 2x \
file1.png file2.png ... file4.png result.png

The option -tile XxY gives X figures in the horizontal direction and Y in the
vertical direction (tile 2x means two figures per row and -tile x2 means
two rows).

The montage program is only appropriate for bitmap images (PNG, JPEG,
GIF, TIFF). Images in the PDF format should be mounted together using pdftk
(to combine images to one file), pdfnup (to align them in tabular format), and
pdfcrop (to remove surrounding whitespace):

Terminal> pdftk file1.pdf file2.pdf ... file4.pdf output tmp.pdf
Terminal> pdfnup --nup 2x2 tmp.pdf # output in tmp-nup.pdf
Terminal> pdfcrop tmp-nup.pdf result.png # output in FE1.png

16

Instead of using montage, pdftk, etc., one can rely on the convenient com-
mand doconce combine_images:

Terminal> doconce combine_images pdf -2 fig1 fig2 fig3 fig4 fig

This command will combine fig1.pdf, fig2.pdf, fig3.pdf, and fig4.pdf with
two images per row (-2 option) and place the result in fig.pdf. By just chang-
ing the pdf option to png, the same will happen with fig1.png, fig2.png,
fig3.png, and fig4.png, resulting in fig.png. The tool employs the above
technique for PNG and PDF files to produce ultimate quality of the combined
image.

One can also run doconce combine_images with filenames with extension,
e.g.,

Terminal> doconce combine_images myfig1.png myfig2.png fig2.png

Here, myfig1.png and myfig2.png are placed next to each other in a new
figure file fig2.png.

Sidecaption in LATEX and HTML. The figure caption can be placed on the
(right) side of figures by using the sidecap feature as a figure option, e.g.,
FIGURE: [myfig, width=500 frac=0.5 sidecap=True]. The generated latex
and pdflatex output then uses the sidecap package and the SCfigure envi-
ronment to typeset the figure. Remember to use a quite low frac value for
figures with sidecaption (0.5 for instance). A table is used for typesetting a fig-
ure with sidecaption in HTML, and a low width value is recommended. The
sidecap=True figure option has no impact on other formats.

TikZ Figures. Many LATEX writers are dependent upon TikZ figures, and these
can be used in DocOnce documents, see the demo document.

Plot Files in LATEX. Users who use Matplotlib to make figures get plots with
fonts that differ from the rest of a LATEX document. A blog post describes tech-
niques for overcoming this problem. The plotfile is then a .pgf file and one must
use the pgf LATEX package. DocOnce supports .pgf plot files for the pdflatex
output format and will make use of such files if they exist. These are included
by a simple \input{file.pgf}. If no .pgf file is found, the pdflatex output
format will apply .pdf, .png, or .jpg file, in that order of preference.

Interactive Bokeh Plots for HTML. Fancy interactive plots for data explo-
ration can be made with the Bokeh library. Such plots reside in an HTML file.
For the HTML output format, DocOnce will detect files of this type and use the
HTML code in the file to embed the plot(s) in the generated output document.

Below is a complete example on creating a grid of interactive plots where
the horizontal axes are coupled to each other. Panning the graph in one plot

17

http://doconce.github.io/doconce/doc/pub/pgf_tikz/pgf_tikz.html
http://bkanuka.com/articles/native-latex-plots/
http://bokeh.pydata.org/en/latest/

automatically moves all the other graphs. In this way, one can scroll through a
long time series simultaneously for many plots. Our demo looks as follows in a
browser:

Such a figure is specified the normal way: if the HTML code for the figure is
in myfig.html, write

FIGURE: [myfig] caption

Options like width are ignored for Bokeh plots, unless you have other ver-
sions of the figure (myfig.png, for instance; see the box below) where such
options may be useful for some formats.

Make alternatives to Bokeh plots.

Note that Bokeh plots have only meaning when DocOnce translates the
document to HTML. For other formats, one needs to supply figure files
that those formats can accept (PNG, PDF, etc.).

Suppose you have made a Bokeh plot in myfig.html. You either
have to embed the FIGURE command inside a preprocessor test to en-
sure FORMAT == ’html’, or you have to provide alternatives to the Bokeh
plot like myfig.png. A Bokeh plot will often have a save button that can be
used to save the plot to PNG format. This can be used for Sphinx, wikis,
and PDFLATEX (although the latter would appreciate real vector graphics in
a PDF plot).

The plot example above is so advanced that there is no natural coun-
terpart in a static PNG or PDF plot.

18

Tip: reduce the size of Bokeh HTML files.

When making Bokeh plots in Python programs, we recommend to use the
mode=’cdn’ option in the call output_file. This argument leads to links
to Bokeh tools in the resulting HTML file. Without the argument, Bokeh
embeds lots of HTML code for its tools into the file. DocOnce issues a
warning in this case and recommends the mode argument.

Note that with mode=’cdn’ the HTML code for the plot requires Internet
access.

An interactive plot like the one shown above, stored in a file tmp.html, can
be made by the code below (download file):

from __future__ import division
from builtins import range
from past.utils import old_div

def bokeh_plot(u, t, legends , u_e , t_e , I, w, t_range , filename):
"""
Make plots for u vs t using the Bokeh library .
u and t are lists (several experiments can be compared).
legends contain legend strings for the various u,t pairs .
Each plot has u vs t and the exact solution u_e vs t_e .
"""
import numpy as np
import bokeh.plotting as plt
plt.output_file(filename , mode=’cdn’, title=’Comparison ’)
Assume that all t arrays have the same range
t_fine = np.linspace(0, t[0][-1], 1001) # fine mesh for u_e
tools = ’pan ,wheel_zoom ,box_zoom ,reset ,’\

’save ,box_select ,lasso_select ’
u_range = [-1.2*I, 1.2*I]
font_size = ’8pt’
p = [] # list of all individual plots
p_ = plt.figure(

width=300 , plot_height=250 , title=legends[0],
x_axis_label=’t’, y_axis_label=’u’,
x_range=t_range , y_range=u_range , tools=tools ,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[0], u[0], line_color=’blue’)
p_.line(t_e , u_e , line_color=’red’, line_dash=’4 4’)
p.append(p_)
for i in range(1, len(t)):

p_ = plt.figure(
width=300 , plot_height=250 , title=legends[i],
x_axis_label=’t’, y_axis_label=’u’,
x_range=p[0].x_range , y_range=p[0].y_range ,

tools=tools ,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[i], u[i], line_color=’blue’)

19

https://github.com/doconce/doconce/tree/master/doc/src/manual/fig/bokeh_demo.html
https://github.com/doconce/doconce/tree/master/doc/src/manual/bokeh_demo.py

p_.line(t_e , u_e , line_color=’red’, line_dash=’4 4’)
p.append(p_)

Arrange in grid with 3 plots per row
grid = [[]]
for i, p_ in enumerate(p):

grid[-1].append(p_)
if (i+1) % 3 == 0:

New row
grid.append([])

plot = plt.gridplot(grid , toolbar_location=’left’)
plt.save(plot)
plt.show(plot)

def demo_bokeh ():
""" Plot numerical and exact solution of sinousoidal shape ."""
import numpy as np

def u_exact(t):
return I*np.cos(w*t)

def u_numerical(t):
w_tilde = (old_div(2.,dt))*np.arcsin(w*dt/2.)
return I*np.cos(w_tilde*t)

I = 1 # Amplitude
w = 1.0 # Angular frequency
P = 2*np.pi/w # Period of signal
num_steps_per_period = [5, 10, 20, 40, 80]
num_periods = 40
T = num_periods*P # End time of signal

t_e = np.linspace(0, T, 1001) # Fine mesh for u_exact
u_e = u_exact(t_e)
u = []
t = []
legends = []

Make a series of numerical solutions with different time
steps

for n in num_steps_per_period:
dt = old_div(P,n) # Time step length
t_ = np.linspace(0, T, num_periods*n+1)
u_ = u_numerical(t_)
u.append(u_)
t.append(t_)
legends.append(’# time steps per period: %d’ % n)

bokeh_plot(u, t, legends , u_e , t_e ,
I=1, w=w, t_range=[0, 4*P],
filename=’tmp.html’)

demo_bokeh ()

Converting Matplotlib Plots to Bokeh. Most Python users use Matplotlib to
create line drawings. Bokeh has a conversion utility that converts Matplotlib

20

plots to Bokeh plots, and it works well for standard curve plots. The script
below demonstrates how to generate a plot in Matplotlib and convert it to a
Bokeh tmp.html file.

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 1001)
y1 = np.exp(-x)*np.sin(2*x)
y2 = np.exp(-0.5*x)*np.sin(2*x)

plt.plot(x, y1 , ’r-’, x, y2, ’b--’)
plt.xlabel(’x’); plt.ylabel(’y’)
legends do not work in Bokeh
plt . legend ([r’$e^{-x}\ sin 2x$ ’, r’$e^{ -\ frac {1}{2}x}\ sin 2x$ ’])
plt.title(’Damped sine functions ’)
plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)

Convert to Bokeh
import bokeh.mpl , bokeh.plotting as bpl
p = bokeh.mpl.to_bokeh(notebook=False , xkcd=False)
#p = bokeh . mpl . to_bokeh ()
bpl.output_file(’tmp.html’, mode=’cdn’)
bpl.save(p)
bpl . show (p)

plt.show()

2.8 Movies

Movies/videos are inserted using the MOVIE: keyword. This feature works well
for the latex, html, rst, and sphinx formats. Other formats try to generate
some HTML file and link to that file for showing the movie. If such a link is not
appropriate and one wants a figure instead of the movie, use the preprocessor
as explained in the box Recommendations below.

The Basic Command. As with FIGURE, the MOVIE command spans just one
line and is of the form

MOVIE: [filename, height=xxx width=yyy] possible caption

Note that there must be a blank line after every MOVIE: command. The
width and height parameters are not required, but leaving them out may lead
to movie sizes you do not want.

Here is a movie in the Ogg format:

Movie 1: A movie in Ogg format. mov/wave.ogg

realized by the command

MOVIE: [mov/wave.ogg, width=600] A movie in Ogg format.

21

A URL also works an an input to MOVIE: :

MOVIE: [http://doconce.github.io/animate/doc/pub/mov-animate/demo.ogg] Ogg movie in cyberspace.

Movie 2: Ogg movie in cyberspace. http://doconce.github.io/
animate/doc/pub/mov-animate/demo.ogg

Important.

Movies will not work properly in sphinx format unless they are located in
a directory (tree) with a name starting with mov. Make it a habit to place
figures in fig-X and movies in mov-X directories, where X is a short logical
name for the current document (or let the names of the directories be just
fig and mov).

MP4, WebM, and Ogg Movies in HTML. If a movie is in Ogg, MP4, or WebM
format, and the output format is html, DocOnce will check if the movie file is
also available in other formats (Ogg, MP4, and WebM) and include these such
that the movie has backup formats in case the browser does not support a par-
ticular format. Providing a movie in Ogg, MP4, and WebM format is therefore
the safest way to ensure that the movie can be played in any browser on any
device.

Notice.

If you specify a movie in Ogg or WebM format and it also exists in MP4 for-
mat, the MP4 format will be loaded first. To avoid having alternative movie
formats in HTML, use the --no_mp4_webm_ogg_alternatives command-
line option when running doconce format.

Movie Handling in Various Formats. Movies are easiest shown in the HTML
format. The reST and Sphinx formats apply the same raw HTML code as the
HTML format and therefore have the same capabilities. The LATEX format sup-
ports different methods for embedding movies via the option -latex_movie=....
Proper values are listed below.

1. href: the \href{run:file}{link} is used for all movies (default), type-
set in a one-line quote environment with the movie caption (if present)
and a movie counter.

2. media9: the media9 package is used for Flash and MP4 movies, movie15
for MPEG and AVI files, and a simple \href{run:file}{link} command

22

http://doconce.github.io/animate/doc/pub/mov-animate/demo.ogg
http://doconce.github.io/animate/doc/pub/mov-animate/demo.ogg

for other formats. Only Acrobat Reader supports displaying these type of
movies.

3. multimedia: the \movie command (known from LATEX Beamer) is used
for movies.

4. movie15: the old movie15 package is used.

Where to put the movie file for a PDF document?

A major concern when using the default (href) link to a movie in a PDF
document is where to store the movie file. If your document is in a repos-
itory at GitHub or Bitbucket, one can use this address for the movie file.
However, for the HTML and Sphinx formats, we would like to a short local
address mov/mymovie.ogg. For LATEX PDF we can then use the command-
line option --prefix_movie= to prefix the local address with the proper
address in the repository in the cloud. Suppose the mov directory is found
in

https://github.com/n/p/blob/master/doc/mov

We need, however, the raw movie file, which has the address

https://raw.githubusercontent.com/n/p/master/doc/mov/m.ogg

We can then use the line

MOVIE: [mov/m.ogg]

in the document, but compile to LATEX with the command-line option

--movie_prefix=https://raw.githubusercontent.com/n/p/master/doc/

All links to movies in the PDF file will then be links to the repository file in
the cloud while for HTML and Sphinx we link to the local movie files that
are stored together with the .html files for the document.

For all other formats, an HTML file that acts as a movie player is gener-
ated and linked from the output document. This movie player has essentially
the same code as the HTML format would have, except that the video tag is
not used, only the embed tag. Some wiki types do have support for videos,
e.g., Wikipedia can work with Ogg files, but DocOnce has not yet implemented
robust schemes for anything but LATEX, HTML, and Sphinx output.

YouTube and Vimeo Movies. Many researchers publish their scientific movies
on YouTube or Vimeo, and DocOnce recognizes YouTube and Vimeo URLs as

23

movies. When the output from DocOnce is an HTML file, the movie will be em-
bedded, otherwise a URL to the YouTube or Vimeo page will be inserted. You
should equip the MOVIE: command with the right width and height of embedded
YouTube and Vimeo movies. The recipe goes as follows:

1. click on Share (on YouTube, you then have to click Embed)

2. note the height and width of the embedded movie

A typical MOVIE command with a YouTube or Vimeo movie is then

MOVIE: [http://www.youtube.com/watch?v=sI2uCHH3qIM, width=420 height=315]

MOVIE: [http://vimeo.com/55562330, width=500 height=278] CFD.

Animation Based on Filename Generators. It is possible to define a movie
from a set of files, usually plot files, which can be shown in sequence to create
an animation. If the files are local on the computer, one can specify them by a
simple Unix wildcard notation, as in

MOVIE: [../experiments/frame_*.png]

Output in the HTML, reST, and Sphinx formats will make use of inline JavaScript
code to show the frames in sequence. LATEX employs the animate package for
the same purpose. Other formats generates a file (movie_playerX.py, where
X is a number) containing the HTML code with JavaScript to show and control
the animation. The generated DocOnce document will have a link to this movie
viewer.

There is an alternative syntax to the Unix wildcard notation:

MOVIE: [../experiments/frame_%04d.png:0->320]

The filename is specified via printf syntax (typically the same syntax as used
to generate the individual frame files). The postfix :0->320 specifies the lower
and upper limit of the counter that is used in the printf specification %04d. This
latter syntax must be used if the plot files reside on some web server, e.g.,

MOVIE: [http://some.where.net/experiments/frame_%04d.png:0->320]

Here is an example:

http://doconce.github.io/animate/doc/pub/mov-animate/frames/frame_%04d.png:0->320:
load movie_player1.html into a browser

24

movie_player1.html

Recommendations.

It is challenging to write robust DocOnce code with movies. The rec-
ommended formats in HTML are MP4, WebM, and Ogg. One should
preferably make all three. These also works in reST and Sphinx.

The filename generation works very well in LATEX, while true movie
formats pose big challenges. On Linux systems, media9 does not work
well because a proper Flash player for embedding in the PDF file is not
always available. The movie15 package also leads to problems because
Acrobat Reader depends on an external player to show the files, and the
correct plugins to launch players with support for a given format are not
trivial to install. Even the plain href{run:file} command relies on an
external player and not all formats will be supported on a given computer.

To have really robust code, use filename generators and not movie
files.

MOVIE: [../experiments/frame_*.png]

One can write flexible DocOnce code and decide at run time if HTML
output should have movie files or filename generators. A relevant snippet
using Mako and a user-defined variable HTMLMOVIE is

% if FORMAT in ("latex", "pdflatex") or HTMLMOVIE == "files":
MOVIE: [../experiments/frame_*.png]

% else:
MOVIE: [../experiments/movie.ogg]

% endif

With the -DHTMLMOVIE=files flag, animation of individual files will be per-
formed, while any other value than files will lead to the use of movie.ogg
in all but LATEX formats. For HTML, docconce will try to load movie.mp4 (if
it exists) and then movie.webm (if it exists) and then finally movie.ogg.

There is no way to control the number of frames per second in LATEX
animations based on filename generators such as myframes*.png. How-
ever, with a little auto editing in a script one can control the frame rates of
the various movies. The rate is specified as 2 in lines on the form

\begin{animateinline}[controls,loop]{2} % frames: f000.png -> f098.png

Setting the rate to 12 instead for this particular movie based on the f%03.png
files, the following doconce subst command does the job in a script:

doconce subst ’,loop]{2}(.+: f000)’ ’,loop{12}\g<1>’ mydoc.do.txt

Sometimes it is desired to use a movie in web formats and a figure
in LATEX, e.g., a figure with four snapshots from the movie combined into

25

a single figure file with doconce combine_images. A preprocessor test is
appropriate for this:

% if FORMAT in ("latex", "pdflatex"):

FIGURE: [myfig, frac=1] caption

% else:

MOVIE: [mymov] caption

% endif

If you encounter a large number of such if-else statements, it is advan-
tageous to write a Mako function in Python:

<%
def figmov(figfile, movfile, caption):

if FORMAT in ("latex", "pdflatex"):
return "FIGURE: [%s, frac=1] %s" % (figfile, caption)

% else:
return "MOVIE: [%s] %s" % (movfile, caption)

% endif
%>

One can avoid if-else tests in the running code and instead write just

${figmov(’myfig’, ’mymov’, ’caption’)}

to insert a movie or figure file, depending on the output format.

2.9 Copying Computer Code from Source Files

Another type of special lines starts with @@@CODE and enables copying of com-
puter code from a file directly into a verbatim environment, see Section 5.1
below.

2.10 Inserting the Output from Operating System Commands

When DocOnce is used to document computer programs and results from com-
puter code, it is important to ensure the document contains the latest version
of the code and the corresponding output. The code is handled by the @@@CODE
directive, while the output has its own directive @@@OSCMD. The syntax reads

@@@OSCMD cmd

where cmd is any text that can be run in the operating system. The output is
copied into the DocOnce source. For example,

@@@OSCMD python -c ’print("Hello,\nWorld!")’

results in

26

Terminal> python -c ’print("Hello,\nWorld!")’
Hello,
World!

There is a command-line option --os_prompt= that can be used to set the
(terminal) prompt that prefixes the command:

• --os_prompt=None results in no prompt, just the command.

• --os_prompt=nocmd results in no prompt and no command, just the out-
put.

• --os_prompt=Terminal> is the default setting (as in the example above).

2.11 Comments

Comments intended to be (sometimes) visible in the output document and read
by readers are known as inline comments in DocOnce. These are described in
Section 3.

Here we address comments in the DocOnce source file that are not in-
tended to be visible in the output document. Basic comment lines start with
the hash #:

#
Here are some comment lines that do not affect any formatting.
These lines are converted to comments in the output format.
#

Such comment lines may have some side effects in the rst and sphinx formats
because following lines are taken as part of the comment if there is not a blank
line after the comment.

The Mako preprocessor supports comments that are filtered out before Do-
cOnce starts translating the document. Such comments are very valuable as
they will never interfere with the output format and they are only present in the
DocOnce source. Mako has two types of comments: lines starting with a dou-
ble hash ## and multiple lines enclosed by the <%doc> (beginning) and </%doc>
(closing) tags.

If you need a lot of comments in the DocOnce file, consider using Mako
comments instead of the single hash, unless you want the comments to be in
the source code of the output document.

To comment out or remove large sections, consider using the Preprocess
preprocessor and an if-else block with a variable that is undefined (typically
something like a test # #ifdef EXTRA in Preprocess, or the Mako equivalent
% if EXTRA:).

27

2.12 Tables

Basic Syntax. A table like

time velocity acceleration
0.0 1.4186 -5.01
2.0 1.376512 11.919
4.0 1.1E+1 14.717624

is built up of pipe symbols and dashes:

|--------------------------------|
|time | velocity | acceleration |
|--r--------r-----------r--------|
| 0.0 | 1.4186 | -5.01 |
| 2.0 | 1.376512 | 11.919 |
| 4.0 | 1.1E+1 | 14.717624 |
|--------------------------------|

• The pipes and column values do not need to be aligned (but why write
the DocOnce source in an ugly way?).

• In the line below the heading, one can insert the characters c, r, or l to
specify the alignment of the columns (centered, right, or left, respectively).
One can also use X for potentially very wide text that must be wrapped
and left-adjusted (will only affect latex and pdflatex where the tabularx
package is then used; X means l in all other formats).

• Similar character can be inserted in the line above the header to align the
headings.

• There must be a blank line before and after the table.

• Tables are inlined in the text, without numbers or labels for reference.

• Some CSS files used by some HTML styles may overrule the alignment
characters c, r, and l and, e.g., center all text.

• For output in LATEX one can control certain aspects of the typesetting of ta-
bles: the text size (--latex_table_format=), the color of every two rows
(--latex_colored_table_rows=), and the space between rows (--latex_table_row_sep=).

Here is an example with centered headings (which is default anyway), and
the numbers are left-adjusted in the first column and right-adjusted in the two
others.

|--c--------c-----------c--------|
|time | velocity | acceleration |
|--l--------r-----------r--------|
| 0.0 | 1.4186 | -5.01 |

28

| 2.0 | 1.376512 | 11.919 |
| 4.0 | 1.1E+1 | 14.717624 |
|--------------------------------|

Typeset result:

time velocity acceleration
0.0 1.4186 -5.01
2.0 1.376512 11.919
4.0 1.1E+1 14.717624

Pipes | can also be inserted to indicate vertical rules in LATEX tables (they are
ignored for other formats):

|--------------------------------|
|time | velocity | acceleration |
|--l---|----r-----|-----r--------|
| 0.0 | 1.4186 | -5.01 |
| 2.0 | 1.376512 | 11.919 |
| 4.0 | 1.1E+1 | 14.717624 |
|--------------------------------|

Notice.

• Not all formats offer alignment of heading or entries in tables (rst
and sphinx are examples).

• DocOnce tables are very simple: neither entries nor headings can
span several columns or rows. When that functionality is needed,
one can make use of the preprocessor and if-tests on the format
and insert format-specific code for tables.

Quick way of creating tables. It takes some efforts to put the pipes and
dashes correctly in the table format. A quick way of generating a DocOnce
table is to first put the table entries in a file with comma between the entries.
This is essentially a file in the famous CSV format. Data in CSV format can be
transformed to DocOnce table format by the doconce csv2table utility:

Terminal> doconce csv2table somefile.csv > table.do.txt

For example, we can write a text file tmp.csv with

time, velocity, acceleration
0.0, 1.4186, -5.01
2.0, 1.376512, 11.919
4.0, 1.1E+1, 14.717624

29

Running doconce csv2table tmp.csv creates the table

|------c--------------c--------------c-------|
| time | velocity | acceleration |
|------c--------------c--------------c-------|
| 0.0 | 1.4186 | -5.01 |
| 2.0 | 1.376512 | 11.919 |
| 4.0 | 1.1E+1 | 14.717624 |
|--|

If the output from doconce csv2table is redirected to a file:

Terminal> doconce csv2table data.csv > mytable.do.txt

one can easily include this file by # #include "mytable.do.txt" in the Do-
cOnce source file. This is an efficient method for generating DocOnce tables
directly from data.

Tables from DocOnce to CSV Data Files. The command-line option –tables2csv
(to doconce format) makes DocOnce dump each table to CSV format in a file
table_X.csv, where X is a generated table number. This feature makes it easy
to load tables from DocOnce documents into spreadsheet programs for further
analysis.

2.13 Lists

An unordered bullet list makes use of the * as bullet sign and is consistently
indented by some chosen spaces as follows

* item 1
* item 2

* subitem 1, if there are more
lines, each line must
be exactly intended as shown here
(i.e., start in the same column)

* subitem 2,
also spans two lines

* item 3

This list gets typeset as

• item 1

• item 2

– subitem 1, if there are more lines, each line must be exactly intended
as shown here (i.e., start in the same column)

– subitem 2, also spans two lines

• item 3

30

In an ordered list, each item starts with an o (as the first letter in ordered):

o item 1
o item 2

* subitem 1
* subitem 2

o item 3

resulting in

1. item 1

2. item 2

• subitem 1

• subitem 2

3. item 3

Ordered lists cannot have an ordered sublist, i.e., the ordering applies to the
outer list only.

In a description list, each item is recognized by a dash followed by a key-
word followed by a colon:

- keyword1: explanation of keyword1

- keyword2: explanation
of keyword2 (remember to indent properly
if there are multiple
lines)

The result becomes

keyword1: explanation of keyword1

keyword2: explanation of keyword2 (remember to indent properly if there are
multiple lines)

No indentation - except in lists!

DocOnce syntax is sensitive to whitespace! No lines should be indented,
only lines belonging to lists. Indented lines may give strange output in
some formats. Also note that extra whitespace after “item” indicators (*,
o, or -) in lists may give strange behavior.

31

3 Inline Tagging

DocOnce supports tags for emphasized phrases, boldface phrases, and verbatim
text (also called type writer text, for inline code), colored words, plus LaTeX/-
TeX inline mathematics, such as ν = sin(x). Links are easy to define, either
with a text or just a plain http://google.com. Also a non-breaking space (to
avoid linebreak), linebreak,
m-dash (as in m—dash), and horizontal rule can be specified (below).

——-

Limitation of inline tagging.

Since DocOnce applies regular expressions to recognize inline tagging,
there might be cases where the tags are not correctly interpreted and
translated. Fortunately, most such pitfalls are easily circumvented. The
troubleshooting document shows some examples.

3.1 Emphasized Words

Emphasized text is typeset inside a pair of asterisk, and there should be no
spaces between an asterisk and the emphasized text, as in

emphasized words

Boldface font is recognized by an underscore instead of an asterisk:

several words in boldface followed by *emphasized text*.

The line above gets typeset as several words in boldface followed by empha-
sized text. One should only have pure text (no mathematical formulas) between
the boldface or emphasize markers, and no leading or trailing blanks (with such
blanks, the text will not be recognized as boldface or emphasize).

Colored text is formatted as

some text color{red}{more text in red}

3.2 Inline Verbatim Text

Verbatim text, typically used for short inline code, is typeset between backticks:

‘call myroutine(a, b)‘ looks like a Fortran call
while ‘void myfunc(double *a, double *b)‘ must be C.

The typesetting result looks like this: call myroutine(a, b) looks like a For-
tran call while void myfunc(double *a, double *b) must be C. Note that
there must be no leading or trailing spaces inside the backticks.

32

http://google.com
http://google.com
http://doconce.github.io/doconce/doc/pub/trouble/trouble/trouble.html#trouble:pitfalls

It is recommended to have inline verbatim text on the same line in the Do-
cOnce file, because some formats (LATEX in combination with the ptex2tex pro-
gram (but not doconce pretex)) will have problems with inline verbatim text
that is split over two lines.

Notice.

Watch out for mixing backticks and asterisk (i.e., verbatim and empha-
sized code): the DocOnce interpreter is not very smart in detecting such
errors. A missing backtick will also quickly create strange output. If you
suspect inline code to be the source of problems in the final format, ex-
amine the DocOnce source and the output.

3.3 Links to Web Addresses

Web addresses with links are typeset as

some URL like "Search Google": "http://google.com".

which appears as some URL like Search Google. The space after colon is
optional, but it is important to enclose the link and the URL in double quotes.

To have the URL address itself as link text, put an "URL" or URL before the
address enclosed in double quotes:

Click on this link: URL: "https://github.com/doconce/doconce".

which gets rendered as Click on this link: https://github.com/doconce/doconce.
(There is also support for lazy writing of URLs: any http or https web ad-

dress with a leading space and a trailing space, comma, semi-colon, or ques-
tion mark (but not period!) becomes a link with the web address as link text.)

3.4 Links to Mail Addresses

Links that launch an e-mail to a specified address are written as ordinary URLs,
typically as

Send "mail": "mailto:yourusername@example.com"
Alternative:
to "‘yourusername@example.com‘": "mailto:yourusername@example.com".

which appears as Send mail to yourusername@example.com.

3.5 Links to Local Files

Links to files ending in .txt, .html, .pdf, .py, .f, .f77, .f90, .f95, .sh, .csh,
.ksh, .zsh, .c, .cpp, .cxx, .pl, and .java follows the same setup:

33

http://google.com
https://github.com/doconce/doconce
mailto:yourusername@example.com
mailto:yourusername@example.com

see the "DocOnce Manual": "manual.do.txt".

which appears as the DocOnce Manual. However, linking to local files like this
needs caution:

• In the html format the links work well if the files are supplied with the
.html with the same relative location.

• In the latex and pdflatex formats, such links in PDF files will not work
unless the .tex file has a full URL specified through a \hyperbaseurl
command and the linked files are located correctly relative to this URL.
Otherwise full URL must be used in links.

• In the sphinx format, links to local files do not work unless the files reside
in a _static directory (a warning is issued about this).

Thus, we strongly recommend to copy the relevant files to a _static or _static-name
directory and make links to files in this directory only (name is the nickname of
the DocOnce document, usually the name of the parent directory or main doc-
ument). Other links to files should use the full URL. If DocOnce is used for
HTML output only, then plain links to local files work fine.

If you want a link to a local source code file and want to have it viewed in
the browser rather than being downloaded, we recommend to transform the
source code file to HTML format by running pygmentize, e.g.,

Terminal> pygmentize -l bash -f html -O full,style=emacs \
-o _static/make.sh.html subdir/make.sh

Then you can link to _static/make.sh.html instead of subdir/make.sh. Here
is an example where the reader has the file available as src/myprog.py in her
software and the document links to _static/myprog.py:

See the code URL:"src/myprog.py" ("view: "_static/myprog.py.html").

Links to files with other extensions are typeset with the filename as link text.
The syntax consists of the keyword URL, followed by a colon, and then the
filename enclosed in double quotes:

URL: "manual.html"

resulting in the link manual.html.

3.6 Quotes

Quotations employ either the emphasized font or double quotation marks. In
the latter case, one should not use the character " but rather the (LaTeX-
inspired) construction with double backticks and two single quotes:

This is a sentence with ‘‘words to be quoted’’.

34

manual.do.txt
manual.html

To find double quotes that should be transferred to the above type of quotation
(which is a common mistake), one can run a regular expression search like

Terminal> find . -name ’*.do.txt’ -exec grep -E \
’[^("]"[A-Za-z0-9 ,]+" *[^:‘)"]’ {} \; -print

This search may give many false hits as double quotes are frequently used in
computer code and preprocessor instructions (URLs and hyperlinks should not
give hits in the above regular expressions).

3.7 Non-Breaking Space

The non-breaking space character is tilde:

Here comes a long line with a specification of a number with unit at the end,
which is an example that requires a "non-breaking space character":
"http://en.wikipedia.org/wiki/Non-breaking_space": 7.4~km is traveled
in~$7.4/5.5\approx 1.345$~s. (Computer code, where the tilde has a
meaning, as in ‘y = ~x‘, is not affected. The non-breaking character only
works between characters, numbers and the math dollar sign.)

This is rendered as

Here comes a long line with a specification of a number with unit at
the end, which is an example that requires a non-breaking space
character: 7.4 km is traveled in 7.4/5.5 ≈ 1.345 s. (Computer code,
where the tilde has a meaning, as in y = x, is not affected. The
non-breaking character only works between characters, numbers
and the math dollar sign.)

3.8 Horizontal rule

A horizontal rule for separating content vertically, like this:
—–
is typeset as four or more hyphens on a single line:

3.9 Em-dash

The latex, pdflatex, sphinx, html, pandoc, and ipynb formats support em-
dash, indicated by three hyphens: –-. Other formats print just the three hy-
phens. The em-dash has two applications:

• as alternative to an ordinary single hyphen (with space around) in a
sentence—except that there are no spaces around the em-dash (this is
common, cf. Wikipedia), and

• origin of quotes (where there is no space between the end of the quote
and the m-dash):

35

http://en.wikipedia.org/wiki/Non-breaking_space
http://en.wikipedia.org/wiki/Non-breaking_space
https://en.wikipedia.org/wiki/Dash

Premature optimization is the root of all evil.—Donald Knuth.

The associated DocOnce source reads

!bquote
Premature optimization is the root of all evil.---Donald Knuth.
!equote

3.10 En-dash

The en-dash constists of two hyphens, as in –, and can be used instead of a
single hyphen to get a slightly longer hyphen (LATEX writers are especially used
to this). Common applications are

• hyphen in compound words as the Navier–Stokes equations (here written
as Navier–Stokes)

• hyphen in number ranges like 1–9

• hyphen around a sentence in sentence: To be precise – but not to detailed
– we should ... (here the hyphen is written as –), as an alternative to em-
dash (see section above)

The latex, pdflatex, sphinx, html, pandoc, and ipynb formats support en-
dash (basically this means that HTML output has &ndash and LATEX output is
not altered). Other formats just show the raw double hyphen.

3.11 Ampersand

An ampersand, as in Guns & Roses or,Texas A & M, is written as a plain &
with space(s) on both sides. Single upper case letters on each side of &, as in
Texas A {\&} M, remove the spaces and result in,Texas A & M, while words on
both sides of &, as in Guns {\&} Roses, preserve the spaces: Guns & Roses.
Failing to have spaces before and after & will result in wrong typesetting of the
ampersand in the html, latex, and pdflatex formats. If special quoting of
the ampersand is undesired, e.g., when one has inserted native LATEX code for
tables, the command-line option --no_ampersand_quote for doconce format
turns off the ampersand treatment for all formats.

3.12 Footnotes

Typesetting of footnotes employs a common email or Extended Markdown syn-
tax:

Footnotes are typeset according to the output format[^typesetting].
The syntax is optional spaces, opening bracket, hat, a footnote name
without spaces[^remedy-for-name-with-spaces], and closing bracket. The
logical name of the footnote is not used in LaTeX, HTML,
reStructuredText, or Sphinx, because these languages employ numbered

36

footnotes. Other formats employ the logical name.

[^typesetting]: Typesetting of the footnote depends on the format.
Plain text does nothing, LaTeX removes the definition and inserts the
footnote as part of the LaTeX text. reStructuredText and Sphinx
employ a similar type of typesetting as Extended Markdown and DocOnce,
and in HTML we keep the same syntax, just displayed properly in HTML.

Footnotes are preferably defined after the paragraph they are used.
The definition is the footnote syntax (some optional space, bracket,
hat, name, bracket) followed by colon and a text.
A new paragraph marks the end of a footnote.

[^remedy-for-name-with-spaces]: Just put in dashes or underscores in
case of spaces.

The text above looks as follows.
Footnotes are typeset according to the output format1. The syntax is op-

tional spaces, opening bracket, hat, a footnote name without spaces2, and
closing bracket. The logical name of the footnote is not used in LATEX, HTML,
reStructuredText, or Sphinx, because these languages employ numbered foot-
notes. Other formats employ the logical name.

Footnotes are preferably defined after the paragraph they are used. The def-
inition is the footnote syntax (some optional space, bracket, hat, name, bracket)
followed by colon and a text. A new paragraph marks the end of a footnote.

3.13 Inline Comments

DocOnce also supports inline comments in the text:
[name: comment]

where name is the name of the author of the comment, and comment is a plain
text text. Note that there must be a space after the colon, otherwise the com-
ment is not recognized. The name can contain upper and lower case charac-
ters, digits, single quote, + and -, as well as space. Next is an example. hpl’s
comment 1: Inline comments can span several lines, if desired.

The name and comment are visible in the output unless doconce format is
run with a command-line argument --skip_inline_comments (see Section 12
for an example). Inline comments are helpful during development of a docu-
ment since different authors and readers can comment on formulations, miss-
ing points, etc. All such comments can easily be removed from the .do.txt file
by doconce remove_inline_comments (see Section 12).

Inline comments are typeset in a simple way: boldface name, a numbering
of the comment, and then the comment, all in red and in parenthesis. However,
with the --latex_todonotes option, LATEX will apply the todonotespackage to
typeset the comments in very visible color boxes.

1Typesetting of the footnote depends on the format. Plain text does nothing, LATEX removes the
definition and inserts the footnote as part of the LATEX text. reStructuredText and Sphinx employ a
similar type of typesetting as Extended Markdown and DocOnce, and in HTML we keep the same
syntax, just displayed properly in HTML.

2Just put in dashes or underscores in case of spaces.

37

3.14 Inline Comments for Editing

Notice.

The inline editing syntax in DocOnce was implemented before the inven-
tion of CriticMarkup. Now it would make sense to use the CriticMarkup
syntax and associated tools. (DocOnce needs proper rendering of Critic-
Markup

Inline comments can also be used to markup editing of the text. The follow-
ing syntax is supported:

[add: ,]
[add: .]
[add: ;]
[del: ,]
[del: ,]
[del: .]
[del: ;]
[add: some text]
[del: some text]
[edit: some text -> some replacement for text]
[name: some text -> some replacement for text]

That is, one can add, delete, and replace text, and add or delete a comma,
period, or semicolon. Special typesetting will highlight these edits. Below is an
example of text with inline editing.

Originally, we have the text

First consider a quantity Q. Without loss of generality, we assume
$Q>0$. There are three, fundamental, basic property of Q.

Then, some reader wants to change this text and explicitly demonstrate what is
deleted, added, and replaced (as when using track changes in Microsoft Word
or LibreOffice Writer). The use of the add, del, and replacement construction
with -> may look as follows.

First[add: ,] consider [edit: a quantity -> the flux]
[del: Q. Without loss of generality,
we assume] $Q>0$. There are three[del: ,] fundamental[del: , basic]
[edit: property -> properties] of Q. [add: These are not
important for the following discussion.]

The text gets rendered as

First, (edit 2: add comma) consider (edit 3:) a quantity the flux (edit
4:) Q. Without loss of generality, we assume Q > 0. There are
three (edit 5: delete comma) fundamental(edit 6:) , basic (edit 7:)
property properties of Q. (edit 8:) These are not important for the
following discussion.

Such inline comments with edits are only given special typesetting in the
output formats latex, pdflatex, html, and sphinx. Otherwise, just the Do-
cOnce syntax is shown (but that is also quite readable as edit instructions.)

38

https://github.com/CriticMarkup/CriticMarkup-toolkit

The editing suggested by the edit comments can be implemented in the
DocOnce file by the command

Terminal> doconce apply_edit_comments mydoc.do.txt

3.15 Forced Line Breaks

By ending a line in the DocOnce file with <linebreak> the output format has a
forced linebreak at this point. This can be used to typeset poems, songs (if not
in a verbatim block), or the origin of quotes. Here is an example:

!bquote
*Program writing is substantially more demanding than book
writing. Why is it so? I think the main reason is that a larger
attention span is needed when working on a large computer program
than when doing other intellectual tasks.* <linebreak>
Donald Knuth cite[p. 18]{Knuth85}, computer scientist, 1938-.
!equote

is rendered as

Program writing is substantially more demanding than book writing.
Why is it so? I think the main reason is that a larger attention span
is needed when working on a large computer program than when
doing other intellectual tasks.
Donald Knuth [1, p. 18], computer scientist, 1938-.

The <linebreak> is a newline in LATEX if it has preceding text, otherwise it
is a \vspace{3mm}. In HTML, <linebreak> is
. Both constructions can be
used to either force a linebreak or add vertical space.

Tip on using forced linebreaks.

The <linebreak> tag is often useful in slides to avoid overfull lines in bul-
let lists, portion such lines into separate lines, or to insert vertical space.
It can be used in admonitions too to get more space between the title and
the text. Remember to have <linebreak> at the end of the line.

3.16 Inline Mathematics

Inline mathematics is written as in LATEX, i.e., inside dollar signs. Many formats
leave this syntax as it is (including the two dollar signs), so nice math formatting
is only obtained in LATEX, HTML, MediaWiki, and Sphinx (Epytext has some
inline math support that is utilized).

The following text

Let $a=\sin(x) + \cos(x)$. Then $a^2 = 2\sin(x)\cos(x)$
because $\sin^2x + \cos^2x = 1$.

39

is rendered as “Let a = sin(x) + cos(x). Then a2 = 2 sin(x) cos(x) because
sin2 x+ cos2 x = 1.”

Mathematical expressions in LATEX syntax often contains special formatting
commands, which may appear annoying in plain text. DocOnce therefore sup-
ports an extended inline math syntax where the writer can provide an alterna-
tive syntax suited for formats close to plain ASCII:

Here is an example on a linear system
${\bf A}{\bf x} = {\bf b}$|$Ax=b$,
where $\bf A$|A is an $n\times n$|nxn matrix, and
$\bf x$|x and $\bf b$|b are vectors of length n|n.

That is, we provide two alternative expressions, both enclosed in dollar signs
and separated by a pipe symbol, the expression to the left is used in formats
with LATEX support (latex, pdflatex, html, sphinx, mwiki), while the expres-
sion to the right is used for all other formats. The above text is typeset as "Here
is an example on a linear system Ax = b, where A is an n × n matrix, and x
and b are vectors of length n."

3.17 Cross-Referencing

References and labels are supported. The syntax is simple:

label{section:verbatim} # defines a label
For more information we refer to Section ref{section:verbatim}.

The DocOnce label syntax is close that that of labels and cross-references
in LATEX, but note that labels cannot contain whitespace and cannot have a
backslash.

When the label is placed after a section or subsection heading, the plain
text, epytext, and st formats will simply replace the reference by the title of
the (sub)section. All labels will become invisible, except those in math envi-
ronments. (In the rst and sphinx formats, the end effect is the same, but the
label and ref commands are first translated to the proper reST commands
by doconce format.) In the html, ipynb, and wiki formats, labels become an-
chors and references become links, and with LATEX label and ref are updated
with backslashes so these commands work as usual in LATEX.

Since references to sections appear differently in different formats, we pro-
vide an example.

..., we refer to Section ref{sec:theory}.

======= Basic Theory =======
label{sec:theory}

A first discovery was that 1+1 is 2.

The reference appears as follows in various output formats:

• latex and pdflatex: “we refer to Section 2.3” with LATEX code
we refer to Section~\ref{sec:theory}

40

• html: “we refer to the section Basic Theory” with the HTML code
we refer to the section Basic Theory

• rst, sphinx: “we refer to the section Basic Theory”

• plain: “we refer to the section "Basic Theory"”

• ipynb: “we refer to the section Basic Theory” with Markdown code
we refer to the section [Basic Theory](#sec:theory)

• mwiki: “we refer to the section Basic Theory” with MediaWiki code
We refer to the section [#Basic_Theory]

Labels and references should only be used for (sub)sections, equations, fig-
ures, and movies (since DocOnce does not support references to tables and
algorithms, for instance). By the way, here is an example on referencing Fig-
ure 1. Additional references to Sections 5.2 and 5.3 are nice to demonstrate,
as well as a reference to equations, say (??)-(??).

References to equations must be in parentheses!

LATEX writers who are used to \eqref{} should observe that there is only
one type of reference syntax in DocOnce, ref, without backslash, and
that references to an equation with label my:special:eq must feature
parentheses and look like

..., see (ref{my:special:eq}).

Hyperlinks to files or web addresses are handled as explained in Section 3.
References to equations and sections in other documents can be done by

the generalized cross-referencing syntax explained in the next section. How-
ever, sometimes one wants in an HTML document or notebook to make refer-
ences to equations and sections in a LATEX textbook. This is not well handled by
the generalized cross-referencing technique, but DocOnce has a special option
for this feature: --replace_ref_by_latex_auxno=../book.aux will read the
label and numbering information from ../book.aux and replace all references
(ref) by the corresponding number found in the ../book.aux file. Sometimes
one wants to use this feature for selected references. In that case, use refaux
instead of ref. If there one or more refaux commands in the DocOnce source,
only refaux references will be replaced by numbers from the .aux file. Other-
wise, all ref commands corresponding to labels in the .aux file will be replaced.
In any case, the --replace_ref_by_latex_auxno= option is needed to specify
one .aux file.

3.18 Generalized Cross-Referencing

Sometimes a series of individual documents may be assembled into one large
document, typically a book. In the book one wants to make cross references

41

between chapters and sections, while these become references to external
documents when the chapters (or sections) are compiled as stand-alone docu-
ments. For example, one can in a DocOnce file file1.do.txt have text like

...as shown in Section ref{sec:eqs}.

with the label sec:eqs defined in another file file2.do.txt. If file1.do.txt
and file2.do.txt are combined to a single document, the reference is treated
correctly, but if file1.do.txt is compiled as a single document, the label
sec:eqs becomes undefined. Then one would instead write

...as shown in the document "Mathematical Equations":
"http://some.net/doc/matheqs.html" cite{math_eqs_2020}.

LATEX has functionality for referring to labels in external documents. One
must use the xr package and list external documents with a command \externaldocument{name}
such that LATEX can extract label information from the name.aux file. We are then
able to write the above reference as

\externaldocument{file2}
...
...as shown in Section ref{sec:eqs} in cite{math_eqs_2020}.

and get output like “...as shown in Section 3.4 in [12].” When the number-
ing of sections in file2.tex changes later, the output from the shown line in
file1.tex will automatically be changed if file2.aux is recently compiled (so
file2.aux with the mapping from labels to section numbers is updated).

Generalized References. DocOnce mimics the LATEX functionality in the xr
package such that one can refer to external documents in other formats than
LATEX (HTML, Sphinx, IPython notebooks, wikis, etc.). This feature is called a
generalized reference and involves a reference with three values. The syntax
of generalized references reads

ref[internal][cite][external]

If all references in the text internal are to labels defined in the present Do-
cOnce document, the generalized reference becomes the text internal. If
one or more references in internal are not labels present in the document and
latex or pdflatex is the output format, the generalized reference becomes the
text internal followed by cite, while for all other formats the text in external
is used.

The example above can now be written as the generalized reference

...as shown in ref[Section ref{sec:eqs}][in cite{math_eqs_2020}][
the document "Mathematical Equations":
"http://some.net/doc/matheqs.html" cite{math_eqs_2020}].

(Note that there must be no spaces between closing and opening brackets:
][.) When the label sec:eqs is found in the current DocOnce document, this
generalized reference becomes

42

Section ref{sec:eqs}

If not, and latex or pdflatex is the output format, the reference becomes

Section ref{sec:eqs}] in cite{math_eqs_2020}

while in all other cases the reference becomes

the document "Mathematical Equations":
"http://some.net/doc/matheqs.html" cite{math_eqs_2020}

For the reference to a label in an external document to work with LATEX, the
document must be listed in the DocOnce file as

Externaldocuments: file2

Several external documents can be listed with comma as delimiter:

Externaldocuments: file2, file3, myfile

on a single line. The Externaldocuments comment leads to use of the xr
package and insertion of \externaldocument{file2} in the .tex output file. It
is a good habit to place the Externaldocument comment after the title, author,
and date.

External documents must be recently compiled.

When compiling DocOnce documents with generalized references to latex
or pdflatex, all documents listed in the Externaldocuments comment
must have been recently compiled such that their .aux files are available
and updated.

Note that cleaning (doconce clean) of the directory holding an exter-
nal document will destroy the .aux file. Thus, latex or pdflatex may
complain that a file listed as \externaldocument{} has no .aux file. This
is just a warning - question marks will appear in the PDF document.

Generalized References to Chapters. A reference to a chapter in a book
becomes just a reference to a complete stand-alone document if chapters are
compiled individually. Here is an example:

...as shown in Chapter ref{ch:model}.

This reference works fine if the present document is a book and ch:model is a
label of a chapter in the book. However, if the chapter with label ch:model is
compiled separately, we would rather write

...as shown in cite{math_eqs_2020}.

43

where math_eqs_2020 is the citation label for the external document as listed
in the Publish database. Or if the output format supports hyperlinks, we would
perhaps add such a link:

the document "Mathematical Equations":
"http://some.net/doc/matheqs.html" cite{math_eqs_2020}.

Such references to chapters or complete documents are very much like the
previously generalized references, but written with refch instead of ref:

refch[internal][cite][external]

The only difference between refch and ref is that the former, for latex and
pdflatex output, just use the cite text and not internal if the labels in the
internal text are not found in the document. To be precise, the reference

...as shown in refch[Chapter ref{ch:eqs}][cite{eqs_doc_2008}][
the document "Some Equations": "http://some.net/someeqs/"].

will be

...as shown in Chapter ref{ch:eqs}.

if ch:eqs is a label defined in the present document. It becomes

...as shown in Chapter cite{eqs_doc_2008}.

if ch:eqs is not found in the present document and the output format is latex
or pdflatex. In all other cases the result becomes

...as shown in
the document "Some Equations": "http://some.net/someeqs/"].

Generalized References to LATEX Documents. It is difficult in the [external]
part of the generalized reference to refer to equation numbers in an external
document. If one wants to refer to a LATEX document, say a textbook, from some
HTML or notebook, then one can use the refaux reference and an .aux file as
explained at the end of the previous section on Cross-Referencing. Here is one
example:

From ref[(ref{eq1})][in cite{Langtangen_2045}][
equation (refaux{eq1}) in cite{Langtangen_2045}], we realize that...

For LATEX output, the reference to eq1 will remain, but for other formats

(refaux{eq1})

will be replaced by (say) (1.5) if we provide the option --replace_ref_by_latex_auxno=mybook.aux
and mybook.aux defines label eq1 to have number 1.5. Replacing refaux by
ref above will lead to hardcoding of ref{eq1} as 1.5 also in LATEX output (which

44

is okay, the xr package and giving Externaldocuments: mybook results in the
same).

The example above is particularly relevant if one writes exercises that are
to be filtered out as notebooks. The notebooks can then refer to a LATEX book,
while in the LATEX version of the document, the exercises make references to
the LATEX book via the xr package the usual way.

Sometimes one does not want to refer to a LATEX document in the [external]
part of a generalized reference, but to a web document. Then the text must be
written in a different way if one has equation or section references. For exam-
ple,

From ref[(ref{eq1})][in cite{Langtangen_2045}][
the differential equation for $u(t)$ in the section
"Setting up the model": "http://some.where.net/doc#model"
in cite{Langtangen_2045}], we realize that...

Tool for Generating Generalized References. The doconce ref_external
command will read all the labels in the external documents listed in the Externaldocuments:
comment and use the Publish database file of the current document (specified
by BIBFILE:) to automatically generate substitution commands that translate
ordinary LaTeX-style internal references to generalized references in DocOnce
syntax. For example, doconce ref_external file1 will find the reference

......as shown in Section ref{sec:eqs}.

as a reference to a label sec:eqs defined in file2, grab the title of file2.do.txt,
find the bibliographic data in the Publish file, and make a substitution command

doconce subst "Section\s+ref{sec:eqs}" "..." $files

where "..." is the complete generalized reference for this particular reference.
In other words, with doconce ref_external one can automatically generate
generalized references between, for example, chapters in a book that exist as
stand-alone documents.

References to equations.

Generalized references to equations work well in LATEX, but not in other
formats as one cannot resolve the equation number in the external docu-
ment. It is then better to write different text using the FORMAT variable in
Mako:

% if FORMAT in ("pdflatex", "latex"):
By combining ref[(ref{eqs:g1})-(ref{eqs:g4})][in cite{some_doc}][
dummy] we can derive the expression ...
% else:
One can from cite{some_doc} derive the expression
% endif

45

The doconce ref_external tool generates an external text in case of
references to equations that says “reference to specific equations (label
eqs:g1 and eqs:g4) in external document "name": "link" is not recom-
mended”. One can then search for this text and make a Mako if-else
rewrite as shown above.

Limited support.

The doconce ref_external tool cannot correctly handle references to a
range of sections like

Sections ref{mydoc:sec1}-ref{mydoc:sec2}

The automatically generated generalized references should always be
manually checked and edited!

A Worked Example. Here is an example on a specific working generalized
reference where the LATEX output also has a hyperlink:

As explained in
ref[Section ref{subsec:ex}][in "Langtangen, 2012":
"http://doconce.github.io/doconce/test/demo_testdoc.html#subsec:ex"
cite{DocOnce:test}][a "section":
"http://doconce.github.io/doconce/test/demo_testdoc.html#subsec:ex" in
the document "A Document for Testing DocOnce":
"http://doconce.github.io/doconce/test/demo_testdoc.html"
cite{DocOnce:test}], DocOnce documents may include tables.

With latex or pdflatex as output, this translates to

As explained in
Section ref{subsec:ex}, DocOnce documents may include tables.

if the label {subsec:ex} appears in the present DocOnce source, and other-
wise

As explained in
Section ref{subsec:ex} in "Langtangen, 2012":
"http://doconce.github.io/doconce/test/demo_testdoc.html#subsec:ex"
cite{DocOnce:test}, DocOnce documents may include tables.

The latter DocOnce code is translated to the following LATEX code:

As explained in
Section~\ref{subsec:ex} in
\href{{http://doconce.github.io/doconce/...}}{Langtangen, 2012}
\cite{DocOnce:test}, DocOnce documents may include tables.

In a format different from latex and pdflatex, the effective DocOnce text be-
comes

46

As explained in
a "section":
"http://doconce.github.io/doconce/test/demo_testdoc.html#subsec:ex" in
the document "A Document for Testing DocOnce":
"http://doconce.github.io/doconce/test/demo_testdoc.html"
cite{DocOnce:test}, DocOnce documents may include tables.

The rendered text in the current format becomes

As explained in Section ??in Langtangen, 2012 [2], DocOnce doc-
uments may include tables.

A complete “chapter” reference may look like

As explained in
refch[Chapter ref{ch:testdoc}]["Langtangen, 2012":
"http://doconce.github.io/doconce/test/demo_testdoc.html"
cite{DocOnce:test}][the document
"A Document for Testing DocOnce":
"http://doconce.github.io/doconce/test/demo_testdoc.html"
cite{DocOnce:test}], DocOnce documents may include tables.

The output now, if ch:testdoc is not a label in the document, becomes in the
latex and pdflatex case

As explained in
"Langtangen, 2012":
"http://doconce.github.io/doconce/test/demo_testdoc.html"
cite{DocOnce:test}, DocOnce documents may include tables.

That is, the internal reference Chapter ... is omitted since it is not meaningful
to refer to an external document as “Chapter”. The resulting rendered text in
the current format becomes

As explained in Langtangen, 2012 [2], DocOnce documents may
include tables.

Note that LATEX cannot have links to local files, so a complete URL in the
form http://... must be used.

Tip.

Use doconce ref_external to get an overview of the external references
in a file. Very often you want to rewrite the text to reduce the amount
of external referencing. Remember then to compile your document be-
fore running doconce ref_external again since the command applies
the compiled files to get information (tmp_preprocess_* or tmp_mako_*)
if you use any of the Preprocess or Mako preprocessors.

47

http://doconce.github.io/doconce/test/demo_testdoc.html#subsec:ex
http://doconce.github.io/doconce/test/demo_testdoc.html

Splitting documents into smaller parts is easy!

The generalized references and the doconce ref_external are great
tools for splitting an existing document into smaller parts, say one chapter
into two, or one book into two books. Such a split will normally create
a lot of difficulties with cross-document referencing (unless you just write
directly in LATEX with the xr package).

3.19 Index

An index can be created for the latex, rst, and sphinx formats by the idx
keyword, following a LaTeX-inspired syntax:

idx{some index entry}
idx{main entry!subentry}
idx{‘verbatim_text‘ and more}

The exclamation mark divides a main entry and a subentry. Backquotes sur-
round verbatim text, which is correctly transformed in a LATEX setting to

\index{verbatim_text@\texttt{\rm\smaller verbatim_text and more}}

Everything related to the index simply becomes invisible in plain text, Epytext,
StructuredText, HTML, and wiki formats.

Note:

idx commands should be inserted outside paragraphs and admonitions,
not in between the text as this may cause some strange behaviour of reST
and Sphinx formatting. It is recommended that index items be placed right
after section headings, before the text begins, while index items related
to a paragraph should be placed above the paragraph one a separate
line (and not in between the text or between the paragraph heading and
the text body, although this works fine if LATEX is the output format). For
paragraphs with === heading, the index keywords should be placed above
the heading.

The keywords in the index are automatically placed in a meta tag in html
output such that search engines can make use of the them.

SIAM has developed a very useful document on how to create an effective
index.

48

http://www.siam.org/books/authors/indexguidelines.pdf
http://www.siam.org/books/authors/indexguidelines.pdf

3.20 Emojis

Emojis are specified by syntax like :sweat_smile:, followed by whitespace
(blank or newline) before and after. The available emoji names are shown at
http://www.emoji-cheat-sheet.com. Here is an example:

DocOnce supports emojis for the html, pdflatex, and pandoc formats. All
other formats will just print the raw emoji name (like :sweat_smile:). The
command-line option --no_emoji removes all emojis from the output so you
can get serious in a second.

4 Exercises, Problems, Projects, and Examples

DocOnce has special support for four types of “exercises”, named exercise,
problem, project, or example. These are all typeset as special subsections that
start with a subsection headline surrounded by 5 = characters. These subsec-
tions continue until the next headline or the end of the file. The headline itself
must consists of the word Exercise, Problem, Project, or Example, followed by
a colon and a title of the exercise, problem, or project.

4.1 Exercise Syntax Examples

Elements in an Exercise. The next line(s) may contain a label and specifi-
cation of the name of the result file(s) (if the answer to the exercise is to be
handed in) and a solution file. The DocOnce code looks like this:

===== Project: Determine the Distance to the Moon =====
label{proj:moondist}
file=earth2moon.pdf
solution=eart2moon_sol.do.txt

The running text of the project goes here....

DocOnce will recognize the exercise, problem, project, or example title, the op-
tional label, the optional name of the answer file (file=), the optional name
of the solution file (solution=), and the running text. In addition, one can
add subexercise environments, starting with !bsubex and ending with !esubex,
on the beginning of separate lines. Within the main exercise or a subexer-
cise, three other environments are possible: (full) solution, (short) answer, and
hints. The environments have begin-end directives !bans, !eans, !bsol, !esol,
!bhint, !ehint, which all must appear on the beginning of a separate line (just
as !bc and !ec).

The file= or files= command accepts a comma-separated list of file-
names. Sometimes it is appropriate to skip the file extension and just give
a filestem, as in file=earth2moon.

49

http://www.emoji-cheat-sheet.com

Solutions. The solution environment that can be created with !bsol and
!esol allows inline solutions as an alternative to the solution=... directive
mentioned above (which requires that the solution is in a separate file). Com-
ment lines are inserted so that the beginning and end of answers and solutions
can be identified and removed if desired. It seems that DocOnce authors prefer
!bsol and !esol over a separate solution file.

The command line options --without_answers and --without_solutions
turn off output of answers and solutions, respectively, except for examples. The
command line options --answers_at_end and --solutions_at_end write all
answers and solutions to exercises to a separate section in the end of the
document, respectively. These can be combinee with --without_answers and
--without_solutions to remove answers and solutions from the main text.

The commands !anshide and !solhide can be used to hide from the
main text answers and solutions, respectively, until the !ansoff and !soloff
commands are encountered. Similarly, the !ansdocend and !soldocend com-
mands move answers and solutions to the end of the book.

Avoid headings in solutions.

Headings in solutions in exercises will appear in the table of contents, but
if solutions are left out of the document (using the --without_solutions
option), the table of contents will be wrong and contain non-existing head-
ings from the solution parts. Therefore, never use headings in solutions,
just use paragraph headings (double underscores) if you feel the need for
headings.

Avoid numbered equations in solutions.

Numbered equations in solutions will influence the global numbering of
equations in a document (unless exercises always come at the end of
chapters). If you compile versions of the document with and without solu-
tions, the equation numbering may differ between the versions and may
cause confusion among readers.

Example. A full exercise set-up can be sketched as follows:

===== Exercise: Determine the Distance to the Moon =====
label{exer:moondist}
file=earth2moon.pdf

Here goes main body of text describing the exercise...

!bsubex
Subexercises are numbered a), b), etc.

50

!bans
Short answer to subexercise a).
!eans

!bhint
First hint to subexercise a).
!ehint

!bhint
Second hint to subexercise a).
!ehint
!esubex

!bsubex
Here goes the text for subexercise b).

!bhint
A hint for this subexercise.
!ehint

!bsol
Here goes the solution of this subexercise.
!esol
!esubex

!bremarks
At the very end of the exercise it may be appropriate to summarize
and give some perspectives. The text inside the !bremarks-!eremarks
directives is always typeset at the end of the exercise.
!eremarks

!bsol
Here goes a full solution of the entire exercise, if solutions to
subexercises are not appropriate.
!esol

Exercise versus Problem and Project. Recommended rules for using the
different “exercise” types goes as follows:

• Exercises are smaller problems directly related to the present chapter
(e.g., with references to the text).

• Problems are sufficiently independent of the chapter’s text that they make
sense on their own, separated from the rest of the document.

• Projects are larger problems that also make sense on their own.

• Examples are exercises, problems, or projects, but with full solutions not
typeset with !bsol and !esol but as running text.

Authors may use Exercise everywhere or make use of the convention in the
first three points.

Modified Heading. Sometimes one does not want the heading of an exer-
cise, problem, project, or example to contain the keyword Exercise:, Problem:,
Project:, or Example:. By enclosing the keyword in braces, as in

51

===== {Problem}: Find a solution to a problem =====

The keyword is marked for being left out of the heading, resulting in the
heading “Find a solution to a problem”. In this case, there is no numbering of
exercises, problems, projects, or examples, so --section_numbering=on for
numbering all sections in the document may be a desired option.

Data Structure for all Exercises. The various elements of exercises are col-
lected in a special data structure (list of dictionaries) stored in a file .mydoc.exerinfo,
if mydoc.do.txt is the name of the DocOnce file. The file contains a list of dic-
tionaries, where keys in the dictionary corresponds to elements in the exercise:
filename, solution file, answer, label, list of hints, list of subexercises, closing
remarks, and the main body of text.

4.2 Typesetting of Exercises

Tailored formatting of exercises in special output formats can make use of the
elements in an exercise. For example, one can imagine web formats where the
hints are displayed one by one when needed and where the result file can be
uploaded. One can also think of mechanisms for downloading the solution file
if the result file meets certain criteria. DocOnce does not yet generate such
functionality in any output format, but this is an intended future feature to be
implemented.

For now, exercises, problems, projects, examples are typeset as ordinary
DocOnce sections (this is the most general approach that will work for many
formats). One must therefore refer to an exercise, problem, project, or example
by its label, which normally will translate to the section number (in LATEX, for
instance) or a link to the title of the section. The title is typeset without any
leading Exercise:, Problem:, or Project: word, so that references like

see Problem ref{...}

works well in all formats (i.e., no double Problem Problem appears).

Remark on Typesetting of Examples. Examples are not typeset similarly to
exercises unless one adds the command-line option --examples_as_exercises.
That is, without this option, any heading and starting with Example: makes Do-
cOnce treat the forthcoming text as ordinary text without any interpretation of
exercise-style instructions. This is usually what you want. With the command-
line option --examples_as_exercises, one can use the !bsubex and !bsol
commands to indicate a subproblem and a solution in an example. In this way,
the typesetting of the example looks like an exercise equipped with a solution.
As for exercises, the content of the example runs from the heading until the
next subsection.

52

Examples and exercises share the same counter!

If you use the --examples_as_exercises, any subsection starting with
Example: will get a number for the example, and this number corresponds
to a counter that is shared with Exercise, Problem, and Project. This
works well if you consider Example, Exercise, Problem, and Project to be
similar. In this way, Example is an Exercise with a solution. However, the
same numbering of examples and exercises may look quite odd too, so
be careful with the --examples_as_exercises option.

4.3 List of Exercises, Problems, and Projects

DocOnce also supports listing all exercises, problems, and projects with cor-
responding page numbers. By default, no such listing is enabled. When
running doconce format pdflatex (or latex) there is a command-line option
--list_of_exercises that can be set to

• toc: include exercises, problems, and projects as part of the table of
contents

• loe: make a separate list of exercises, problems, and projects, which
appears after the table of contents

There is a special LATEX environment for the exercises that one can use to fur-
ther tailor the appearance of exercises (given that one edits the .tex file, prefer-
ably by a script after each doconce format command).

There is also a command doconce latex_exercise_toc that makes a spe-
cial table of contents of the exercises. It truncates exercise headings that are
too long. However, by inserting # Short title: Shorter title right after the
heading, the Shorter title will be used as title. Usually, this option is used if
the automatic truncation of the title of the exercise fails (truncation in the middle
of a formula, for instance).

Terminal> doconce latex_exercise_toc mydoc.do.txt "List of Exercises"

Try it out and compare with other methods for listing the exercises.

4.4 Numbering of Extra Equations in Solutions

A potential problem arises if you produce two versions of your document, one
with answers or solutions and one without answers or solutions (--without_answers,
--without_solutions), and there are numbered equations in the solutions.
Equations in the text of the document after these exercises sections might then
be numbered differently in the different versions you produce of the text. There
are two ways out of this problem.

53

Book. In a book with chapters, collect all exercises at the end in a separate
section “Exercises”. Equations are numbered chapter-wise, and equations in
solutions will not influence the numbering of equations before this exercise sec-
tion. However, if some of the exercises contain numbered equations in the
exercise text, numbered equations in solutions to previous exercises will influ-
ence the numbering of equations in forthcoming exercise texts. In such cases,
either avoid numbered equations in a solution or in the exercise text.

Use the tag command. Equations can be given explicit numbers, completely
governed by the writer. The following equation is given the number 11.5.3 and
a label myeq:

!bt
\[1 + 1 = 2 \tag{11.5.3}
label{myeq}
!et

Equations in solutions can then be given their own numbers (here, 11.5 could
be chapter 11, section 5). One can use a Mako variable to automatically assign
appropriate numbers in the tag command.

4.5 Typesetting of solutions to exercises

There is a --exercise_solution= option for controlling the typesetting of so-
lutions. Three values are legal: paragraph means that the solution just gets
a paragraph heading, admon means that the solution is typeset within a notice
admonition environment (!bnotice), while quote means the solution is typeset
within a quote environment.

Suggestion for HTML Bootstrap. If your choice is --exercise_solution=admon,
and you want the Boostrap HTML output format, use --html_admon=bootstrap_panel.
It makes the solutions stand out nicely in the text.

Suggestion for LATEX. Sometimes the standard admons are not suitable for
typesetting solutions because they have a background color, or they are too
eye catching. Here is a trick for LATEX output where we 1) change the admon
environment in solutions from notice to question type, 2) change the parame-
ters in the question admon so there is no catchy background color and also a
thinner frame, 3) typeset code inside solution environment without any back-
ground color. These modifications can be done by editing the mydoc.tex file in
the compilation script (if mydoc is the name of the document).

We can identify all begin and end of question admons in solutions because
both are tagged with the title (Solution). Looking at the mydoc.tex file, we can
therefore accomplish change number 1 by the replacements

54

doconce replace ’notice_mdfboxadmon}[Solution.]’ \
’question_mdfboxadmon }[Solution.]’ mydoc.tex

doconce replace ’end{notice_mdfboxadmon} % title: Solution.’ \
’end{question_mdfboxadmon} % title: Solution.’ mydoc.tex

Change number 2 is done with a regular expression edit that replaces the
complete definition of question admons:
doconce subst -s ’% "question"

admon .+? question_mdfboxmdframed\}’ \
’% "question" admon

\colorlet{mdfbox_question_background }{gray!5}
\\ newmdenv[% edited for solution admons in exercises

skipabove=15pt ,
skipbelow=15pt ,
outerlinewidth=0,
backgroundcolor=white ,
linecolor=black ,
linewidth=1pt , % frame thickness
frametitlebackgroundcolor=blue!5,
frametitlerule=true ,
frametitlefont =\\ normalfont \\bfseries ,
shadow=false , % frame shadow?
shadowsize=11pt ,
leftmargin=0,
rightmargin=0,
roundcorner=5,
needspace=0pt ,

]{question_mdfboxmdframed }’ mydoc.tex

Change number 3 involves mapping pycod and pypro environments inside
admons to pycod2 and pypro2 and define these environments by the simpler
listing style greenblue, which does not have any background color. Mapping of
an environment to another variant inside admons is described in LaTeX code
Environments Inside Admonitions in Section 5.6. For this purpose one employs
the --latex_admon_envir_map= option.

Here is a possible command (that employs a blue background for all boxes,
except pypro that gets a frame to indicate “program” and sys and dat that get
a completely different typesetting):
doconce format pdflatex mydoc \

"--latex_code_style=default:lst[style=blue1_bluegreen]@
pypro:lst[style=blue1bar_bluegreen]@
pypro2:lst[style=greenblue]@
pycod2:lst[style=greenblue]@
dat:lst[style=gray]@
sys:vrb[frame=lines ,label =\\ fbox{{\tiny Terminal}},
framesep=2.5mm ,framerule=0.7pt ,fontsize =\ fontsize{9pt}{9pt}]" \
--exercise_solution=admon --latex_admon_envir_map=2

(Note that we had to split the --latex_code_style= option over several lines –
everything should be on one line in the compilation script!)

The --latex_admon_envir_map=2 option renames an environment like pycod
inside an admon to pycod2, and the --latex_code_style= option defines the

55

new pycod2 environment to be bluegray syntax highlighting, but no background
color. Note that this applies to all question admons, but usually there are few
question admons, so very often this will be a specific typesetting for solutions
to exercises.

Note that when you use --exercise_solution=admon and --latex_admon=mdfbox
(default), you cannot have figures with captions inside the admons, i.e., inside
!bsol and !esol in the present problem setting. Only inline figures will work.
Write these as FIGURE: the usual way, but drop the caption.

The current example shows how we can tailor DocOnce output to a level far
beyond what DocOnce itself can output!

4.6 Extracting Selected Exercises in a Separate Document

The command

Terminal> doconce extract_exercises tmp_mako__mydoc.do.txt --filter=key1;key2

extracts all exercises in mydoc.do.txt with keywords key1 or key2 in a sep-
arate document mydoc_exer.do.txt. For example, this feature can be used
to extract all exercises suitable for being published as IPython/Jupyter note-
books (and perhaps automatically graded by nbgrader). Just attach the key-
word ipynb to all exercises suitable for the IPython/Jupyter notebook and run
the command with –filter=ipynb. Without –filter=, the extract_exercises
utility extracts all exercises such that one can publish this document separately,
with or without solutions and/or short answers. By “exercise” we mean all exer-
cises, problems, and projects.

The numbering of the exercises in the new document follows the numbering
in the original document3, but you must use the --exercise_numbering=chapter
option if you want chapter-based numbering when extracting exercises from a
book.

It is also possible to extract examples along with exercises: just add --examples_as_exercises
(to extract the examples only, equip them with a unique keyword that you can
use in the –filter= option).

Note: Instead of having all filtered exercises in one document, you may (es-
pecially for notebooks) want stand-alone documents for each exercise; see the
next section.

4.7 Extracting Exercises as Stand-Alone Documents

It is sometimes convenient to publish exercises from a larger document as in-
dividual documents. With the --exercises_in_zip option, DocOnce will gen-
erate a zip file mydoc_exercises.zip (for mydoc.do.txt) with each exercise

3If you want a new natural numbering of the extracted exercises only, you must go into the
DocOnce source file with the extracted exercises and remove the comment line that contains the
labels2numbers dictionary.

56

https://github.com/jupyter/nbgrader

(problem, project, or example) in a separate .do.txt file. The zip archive also
contains a script make.py for translating the .do.txt files to various formats. In
university courses it may be attractive to give the students .tex with the exer-
cise text such that the students can fill in the answers and extend the text to a
report. Or one can distribute the exercises as IPython/Jupyter Notebook files
and let the students enter their answers in the notebooks. This approach can
be combined with nbgrader for automatic grading.

The zip archive also contains a file index.do.txt with a list of all the ex-
ercise files that can be published on the Internet and used for download of
the exercises. The index.do.txt file contains a variable FILE_EXTENSIONS for
the type of formats the exercises are available in. The user must edit make.py
accordingly so the desired set of formats are compiled.

Note: Unzipping the archive unpacks the files into a subdirectory called standalone_exercises.
For figure and movie references to work, one needs the --figure_prefix=../
and --movie_prefix=../ options. If the exercise files are distributed to stu-
dents, make sure figure files are also available (check by compiling the exer-
cises!).

References in stand-alone exercises may not work!

Exercises with references to sections in the running text of the original
document cause trouble when the exercises are compiled as stand-alone
documents. For LATEX this may work if the original document is compiled
in the parent directory of standalone_exercises and the corresponding
.aux file is available (in such cases the exercise will make use of the
Externaldocuments: command in the file and use the xr package for
cross-referencing between documents). All other formats will have prob-
lems with references to the original parent document. When missing ref-
erences are encountered, a comment about the issue is inserted in the
exercise file.

Naming of Exercise Files. The option --exercises_in_zip_filename=X can
be used to determine the name of the exercise files. With X=logical, the
logical name specified by the file= command in the exercise is used. With
X=number, the filename contains the exercise number, either an absolute num-
ber (integer) like 132 or a chapter.local_number like 5.2 or B.4 (in case of an
appendix), depending on the option --exercise_numbering=X, with X=absolute
or X=chapter, respectively.

57

https://github.com/jupyter/nbgrader

4.8 Example of an Exercise

The next section shows the typesetting of the following exercise. For output
in HTML with various Bootstrap styles, hints and answers appear as unfolded
sections - one must click to open the text.

===== Exercise: Compute integrals =====
label{doconce:manual:exercise:ex}
files=integrals.py, integrals.pdf
keywords=1+1; integrals; SymPy

Use the most appropriate tools to answer the various subexercises.

!bsubex
What is 1+1?

!bhint
Your brain is a perfectly appropriate tool for this task.
!ehint
!esubex

!bans
2
!eans

!bsubex
What is the integral of $e^{-ax}\sin(wx)$?

!bhint
Assume a and w real.
!ehint

!bsol
This is an easy task for SymPy:

!bc pyshell
>>> import sympy as sp
>>> x = sp.symbols(’x’)
>>> a, w = sp.symbols(’a w’, real=True,positive=True)
>>> F = sp.integrate(sp.exp(-a*x)*sp.sin(w*x), x)
>>> F
-a*sin(w*x)/(a**2*exp(a*x) + w**2*exp(a*x)) -
w*cos(w*x)/(a**2*exp(a*x) + w**2*exp(a*x))
>>> sp.simplify(F)
-(a*sin(w*x) + w*cos(w*x))*exp(-a*x)/(a**2 + w**2)
!ec
That is, $-\frac{e^{- a x}}{a^{2} + w^{2}}
\left(a \sin{\left (w x \right)}
+ w \cos{\left (w x \right)}\right)$.
!esol
!esubex

!bsubex
Compute $\int_{-\infty}^1 e^{-x^4}dx$.

!bsol
Continuing the last session,

!bc pyshell
>>> F = sp.integrate(sp.exp(-x**4), (x, -sp.oo, 0))
>>> F
gamma(1/4)/4
>>> F.evalf()

58

0.906402477055477
!ec
!esol
!esubex

!bsubex
!bquiz
Q: What is correct about the integral $\int e^{-t^2}dt$?

Cw: The integral is the error function.
E: Almost correct, but the error function has a slightly different
definition:

!bt
\[\hbox{erf}(x) = \frac{2}{\sqrt{2}}\int_{0}^x e^{-t^2}dt.\]
!et

Cw: It cannot be computed.
E: That would be correct if computed means ‘‘calculated as
a closed-form formula by hand’’, but the integral
$\int_a^b e^{-t^2}dt$ can be easily computed numerical
methods.

Cr: It equals

!bt
\[\frac{\Gamma{\left(\frac{1}{4} \right)}
\gamma\left(\frac{1}{4}, x^{4}\right)}{16
\Gamma{\left(\frac{5}{4} \right)}},\]
!et
where $\Gamma(x)$ is the (upper) incomplete gamma function
and $\gamma(x)$ is the lower incomplete gamma function
(see "Wikipedia":
"http://en.wikipedia.org/wiki/Incomplete_gamma_function"
for definition).
E: This is correct, as proved by SymPy:

!bc pyshell
>>> import sympy as sym
>>> F = sym.integrate(sym.exp(-x**4), x)
>>> F
gamma(1/4)*lowergamma(1/4, x**4)/(16*gamma(5/4))
!ec

Cw: It equals the cumulative normal density function.
E: The cumulative normal density function, with mean μ and
standard deviation σ, is defined as

!bt
\[\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma}
e^{-\frac{(t-\mu)^2}{2\sigma}}dt.\]
!et
!equiz
!esubex

!bremarks
This exercise demonstrates subexercise, hint, solution, short answer,
multiple-choice question (quiz), and final remark - combined with
mathematics and computer code.
!eremarks

59

Exercise 1: Compute integrals

Use the most appropriate tools to answer the various subexercises.

a) What is 1+1?

Hint. Your brain is a perfectly appropriate tool for this task.

Answer. 2

b) What is the integral of e−ax sin(wx)?

Hint. Assume a and w real.

Solution. This is an easy task for SymPy:
»> import sympy as sp
»> x = sp.symbols(’x’)
»> a, w = sp.symbols(’a w’, real=True ,positive=True)
»> F = sp.integrate(sp.exp(-a*x)*sp.sin(w*x), x)
»> F
-a*sin(w*x)/(a**2*exp(a*x) + w**2*exp(a*x)) -
w*cos(w*x)/(a**2*exp(a*x) + w**2*exp(a*x))
»> sp.simplify(F)
-(a*sin(w*x) + w*cos(w*x))*exp(-a*x)/(a**2 + w**2)

That is, − e−ax

a2+w2 (a sin (wx) + w cos (wx)).

c) Compute
∫ 1
−∞ e−x4

dx.

Solution. Continuing the last session,
»> F = sp.integrate(sp.exp(-x**4), (x, -sp.oo, 0))
»> F
gamma(1/4)/4
»> F.evalf()
0.906402477055477

d)

Question: What is correct about the integral
∫
e−t2

dt?

A. The integral is the error function.
B. It cannot be computed.
C. It equals

Γ
(1

4
)
γ
(1

4 , x
4)

16Γ
(5

4
) ,

60

where Γ(x) is the (upper) incomplete gamma function and γ(x) is the lower
incomplete gamma function (see Wikipedia for definition).

D. It equals the cumulative normal density function.

Answer: C.
Solution:

A: Wrong. Almost correct, but the error function has a slightly different
definition:

erf(x) = 2√
2

∫ x

0
e−t2

dt.

B: Wrong. That would be correct if computed means “calculated as a
closed-form formula by hand”, but the integral

∫ b

a
e−t2

dt? can be easily com-
puted numerical methods.

C: Right. This is correct, as proved by SymPy:
»> F = sp.integrate(sp.exp(-x**4), x)
»> F
gamma(1/4)*lowergamma(1/4, x**4)/(16*gamma(5/4))

D: Wrong. The cumulative normal density function, with mean µ and stan-
dard deviation σ, is defined as

Φ(x) =
∫ x

−∞

1√
2πσ

e−
(t−µ)2

2σ dt.

Filenames: integrals.py, integrals.pdf.

Remarks. This exercise demonstrates subexercise, hint, solution, short an-
swer, multiple-choice question (quiz), and final remark - combined with mathe-
matics and computer code.

5 Other Environments

5.1 Blocks of Verbatim Computer Code

Blocks of computer code, to be typeset verbatim, must appear inside a “begin
code” !bc keyword and an “end code” !ec keyword. Both keywords must be
on a single line and start at the beginning of the line. Before such a code block
there must be a plain sentence (at least if successful transformation to reST
and ASCII-type formats is desired). For example, a code block cannot come
directly after a section/paragraph heading or a table.

Here is a plain code block:

61

http://en.wikipedia.org/wiki/Incomplete_gamma_function

!bc dat
% Could be a comment line in some file
% And some data
1.003 1.025
2.204 1.730
3.001 1.198
!ec

which gets rendered as

% Could be a comment line in some file
% And some data
1.003 1.025
2.204 1.730
3.001 1.198

Tip: let code lines be shorter than 67 characters.

Most output formats from DocOnce will get nice-looking code environ-
ments if you keep the length of lines in source code below or equal to 67
characters.

Typesetting Styles. There may be an argument after the !bc tag to spec-
ify a certain environment (in LATEX, HTML, or Sphinx) for typesetting the ver-
batim code. For instance, !bc dat corresponds to the data file environment
and !bc cod is typically used for a code snippet. There are some predefined
environments explained below. If there is no argument specifying the envi-
ronment, one assumes some plain verbatim typesetting (usually just the most
plain verbatim style in LATEX or HTML, or python in Sphinx, or if ptex2tex is
used, the environment corresponds to ccq which is defined in the config file
.ptex2tex.cfg).

By default, pro is used for complete programs, cod is for a code snippet.
The syntax Xcod and Xpro imply a program or snippet in computer language X,
where X can be f for Fortran, c for C, cpp for C++, sh for Unix shells, pl for Perl,
m for Matlab, cy for Cython, r for Ruby, js for JavaScript, latex for LATEX, html
for HTML, and py for Python. With no X prefix, cod and pro implies Python
code. The argument sys after !bc means a verbatim environment suitable for
operating system commands (and output). As mentioned, dat is for a data
file or print out, pyshell is for plain interactive Python shell sessions, ipy for
interactive IPython sessions, and pysc turns on interactive Python code in exe-
cutable HTML windows (using a SageMathCell server) while being equivalent
to pycod in other formats.

Notebooks and other executable code snippets in HTML may need some
initializing code before a snippet works, and if such code is not intended for
being shown in the text, one can use the Xhid argument to !bc, where hid
indicates a hidden snippet. It becomes executable in live code environments
but is otherwise not shown.

62

All these definitions of the arguments after !bc can be redefined in command-
line arguments for the --latex_code_style= option, the .ptex2tex.cfg con-
figuration file for ptex2tex, and in the sphinx code-blocks comments for Sphinx,
see below.

idx -t code envir postfix

Executable and Non-Executable Code. The ipynb and matlabnb formats
create notebooks where computer code can be executed. Sometimes one
wants to show code that is not to be executed, but just shown as a text block.
Any code environment with a postfix -t indicates that the code is not to be
executed, only displayed. For example, !bc pycod-t is a Python snippet not
intended for execution. All other formats than the notebook formats ignore the
-t postfix.

idx -h code envir postfix

Hiding code blocks in HTML. Code blocks in HTML can be visible or not by
clicking on an associated button Show/hide code. The behavior is triggered
by a postfix -h to the code environment, e.g., !bc pycod-h or !bc pro-h. The
-h postfix has no impact on other output formats.

Customizing Code Environments Types for Sphinx. The argument after
!bc can in case of Sphinx output be mapped to any valid Pygments language
for typesetting of the verbatim block by Pygments, if you do not want to rely on
the defaults. This mapping takes place in an optional comment to be inserted
in the DocOnce source file. Here is an example on such a comment line:

sphinx code-blocks: pycod=python cod=fortran cppcod=c++ sys=console

Three arguments are defined: !bc pycod maps on to the Pygments style python
for Python code, !bc cod maps on to the Pygments style fortran for For-
tran code, !bc cppcod maps on to the Pygments style c++ for C++ code, and
!bc sys maps on to the Pygments console style for terminal sessions. The
same arguments would be defined in .ptex2tex.cfg or on the command line
for doconce ptex2tex for how to typeset the blocks in LATEX using various ver-
batim styles (Pygments can also be used in a LATEX context).

Examples. Here is a verbatim code block with Python code (pycod style):

!bc pycod
def f(x, y):

return x + y

Main program
from math import pi
print(’Testing f:’, f(pi, 0))
!ec

The typeset result of this block becomes

63

def f(x, y):
return x + y

Main program
from math import pi
print(’Testing f:’, f(pi , 0))

Tip.

The enclosing !ec tag of verbatim computer code blocks must be followed
by a newline. A common error in list environments is to forget to indent the
plain text surrounding the code blocks. In general, we recommend to use
paragraph headings instead of list items in combination with code blocks
(it usually looks better, and some common errors are naturally avoided).

And here is a C++ code snippet (cppcod style):

!bc cppcod
void myfunc(double* x, const double& myarr) {

for (int i = 1; i < myarr.size(); i++) {
myarr[i] = myarr[i] - x[i]*myarr[i-1]

}
}
!ec

with the rendered result

void myfunc(double* x, const double& myarr) {
for (int i = 1; i < myarr.size(); i++) {

myarr[i] = myarr[i] - x[i]*myarr[i-1]
}

}

Copying Code from Source Files. Computer code can be copied directly
from a file, if desired. The syntax is then

@@@CODE myfile.f
@@@CODE myfile.f fromto: subroutine\s+test@^C\s{5}END1

The first line implies that all lines in the file myfile.f are copied into a verbatim
block, typset in a !bc Xpro environment, where X is the extension of the file-
name, here f (i.e., the environment becomes !bc fpro and will typically lead to
some Fortran-style formatting). The second line has a fromto: directive, which
implies copying code between two lines in the code, typset within a !bc Xcod
environment (again, X is the filename extension, implying the type of file). Note
that the pro and cod arguments are only used for LATEX and Sphinx output, all
other formats will have the code typeset within a plain !bc environment.) Two
regular expressions, separated by the @ sign, define the “from” and “to” lines.
The “from” line is included in the verbatim block, while the “to” line is not. In the

64

example above, we copy code from the line matching subroutine test (with
as many blanks as desired between the two words) and the line matching C
END1 (C followed by 5 blanks and then the text END1). The final line with the
“to” text is not included in the verbatim block.

One can also specify the code environment explicitly rather than relying on
the file extension:

@@@CODE somefile.py envir=X fromto: def myfunc@def yourfunc

This is the same as writing !bc X and copying parts of the somefile.py text
into the DocOnce source file, followed by !ec. For example, if the lines be-
tween the myfunc and yourfunc functions actually work as a complete Python
program, one could specify envir=pypro to indicate that it is a complete pro-
gram that can be run as is. By default, copying a part of a .py file will lead to
!bc pycod, which indicates a code snippet that normally needs additional code
to be run.

Using envir=None results in a pure include of the file, without any surround-
ing code environment (i.e., no !bc or !ec directives around the contents of the
file). Section 11.3 shows an example.

Let us demonstrate the result of copying a whole file, as specified in the first
line above:

C a comment

subroutine test()
integer i
real*8 r
r = 0
do i = 1, i

r = r + i
end do
return

C END1

program testme
call test()
return

Let us then copy just a piece in the middle as indicated by the fromto:
directive above:

subroutine test()
integer i
real*8 r
r = 0
do i = 1, i

r = r + i
end do
return

The fromto and from-to directives. Note that the “to” line is never copied
into the DocOnce file, but the “from” line is. Sometimes it is convenient to

65

also neglect the “from” line, a feature that is allowed by replacing fromto: by
from-to (“from with minus”). This allows for copying very similar code seg-
ments throughout a file, while still distinguishing between them. Copying the
second set of parameters from the text
--- Start Example 1 ---
c = -1
A = 2
p0 = 4
simulate_and_plot(c, A, p0)
--- End Example 1 ---

--- Start Example 2 ---
c = -1
A = 1
p0 = 0
simulate_and_plot(c, A, p0)
--- End Example 2 ---

is easy with
from-to: Start Example 2@End Example 2

With only fromto: this would be impossible.
Remark for those familiar with ptex2tex: The from-to syntax is slightly differ-

ent from that used in ptex2tex. When transforming DocOnce to LATEX, one first
transforms the document to a .p.tex file to be treated by ptex2tex or doconce
ptex2tex. However, the @@@CODE line is always interpreted by DocOnce first.

Remark for those familiar with the listings package in LATEX: the listing
package can copy code from files, but snippets must be specified through exact
line numbers. The @@@CODE directive above works with regular expressions
which are much less sensitive to edits of the source code file than the line
numbers. Moreover, copy of code from file works in DocOnce across formats
(HTML, Sphinx, Markdown, etc.).

dixcommand-line options!--latex_code_style=}
The --code_prefix=text option adds a path text to the filename specified

in the @@@CODE command. For example
@@@CODE src/myfile.py

and --code_prefix=http://some.place.net, the file
http://some.place.net/src/myfile.py

will be included. If source files have a header with author, email, etc., one
can remove this header by the option ’--code_skip_until=# ---’. The lines
up to and including (the first) # --- will then be excluded.

The regular expressions in CODE commands are non-greedy!

The copying of code from file will search for the first occurrence of the
“from” regular expression and then continue up to the first occurrence of
the “to” expression. This means a non-greedy regular expression. To

66

make the expression greedy is to insert a comment statement as the
“to” expression to make a special end of the snippet to be copied. For
example, you have the code
compute(x)
print(x)
x = new(x)
compute(x)
print(x)
x = new(x)
compute(x)

and you want to copy from the first compute and include the second, but
not the following print(x) statement, i.e.,
compute(x)
print(x)
x = new(x)
compute(x)

fromto: compute@compute will not work. The way to do this is to insert
a comment statement after the desired “to” expression:
compute(x)
print(x)
x = new(x)
compute(x)
dummy comment
print(x)
x = new(x)
compute(x)

The regular expressions are then fromto: compute@# dummy comment
(“from” and “to” are actually plain text here – no use of special regular
expressions).

Removing indentation in copied code. In general, it is not recommended
to have a code block where all lines are indented, because in some output
formats the indentation is respected (e.g., LATEX) while others ignore it (e.g.,
Sphinx). Therefore, at least one line of the code should start in column 1.

Sometimes you want to copy a part of a function where all code is indented.
Then you also want to remove the indentation. This is enabled by @@@CODE-X,
where X is the number of blanks in the indentation to be removed. For example,
@@@CODE-4 will copy the code and remove the first 4 characters from each line.

5.2 LATEX Blocks of Mathematical Text

Blocks of mathematical text are like computer code blocks, but the opening tag
is !bt (begin TeX) and the closing tag is !et. It is important that !bt and !et
appear on the beginning of the line and followed by a newline.

67

!bt
\begin{align}
{\partial u\over\partial t} &= \nabla^2 u + f,
label{myeq1}\\
{\partial v\over\partial t} &= \nabla\cdot(q(u)\nabla v) + g.
label{myeq2}
\end{align}
!et

Here is the result:

∂u

∂t
= ∇2u+ f, (1)

∂v

∂t
= ∇ · (q(u)∇v) + g. (2)

Support of LATEX Math in Various Output Formats. The support of LATEX
mathematics varies among the formats:

• Output in LATEX (latex and pdflatex formats) has full support of all LATEX
mathematics, of course.

• The html format supports single equations and multiple equations via the
align environment, also with labels.

• Markdown (pandoc format) allows single equations and inline mathemat-
ics, but does not allow references to equations (the generated DocOnce
code simulates such references, however).

• MediaWiki (mwiki format) does not enable labels in equations and hence
equations cannot be referred to.

Important!

The main conclusion is that for output beyond LATEX (latex and pdflatex
formats), stick to simple \[and \] or equation and align or align*
environments, and avoid referring to equations in MediaWikis.

Going from DocOnce to MS Word is most easily done by outputting in the
latex format and then using the Pandoc or latex2rtf programs to translate from
LATEX to MS Word. Note that only a subset of LATEX will be translated correctly,
and mathematics is notoriously difficult and unpredictable.

ePub and Mobi. Conversion to the ePub and Mobi formats, popular for read-
ing on Kindle devices, can be accomplished via HTML and Calibre. On De-
bian/GNU Linux, install sudo apt-get install calibre, and run (e.g.)

68

http://johnmacfarlane.net/pandoc/
http://latex2rtf.sourceforge.net/
http://calibre-ebook.com/

Terminal> ebook-convert mydoc.html mydoc.epub
Terminal> ebook-convert mydoc.html mydoc.mobi
Terminal> ebook-convert mydoc.pdf mydoc.epub
Terminal> calibre mydoc.epub # view ebook

Unfortunately, it seems that HTML and PDF documents with mathematics can-
not be converted to ePub by Calibre (PDF looks strange because MathJax
is not used to render formulas in HTML). For documents with mathematics,
ebook-convert is a fine tool, but blocks of computer code may need to be
reformatted into shorter lines.

Pandoc is another program that can generate ePub (not tested). The ePub3
format supports mathematics via MathML. Dicussion on this topic appears in
http://tex.stackexchange.com/questions/1551/use-latex-to-produce-epub.
The LaTeXML program can convert LATEX to XML and XHTML and is a good
starting point for further conversion to ePub, but the plain latexml fails miser-
ably on LATEX documents generated from DocOnce (the present manual to be
precise).

Sphinx has support for compiling documents to the ePub and MOBI formats,
but this author has not yet tried it out. One should definitely test Sphinx along
with ebookmaker.py (see next paragraph) if ePub or MOBI formats are desired.

What has been successfully used to convert DocOnce documents with
mathematics and code to ePub is the ebookmaker.py script (use this fork by
the author for a version that actually works). HTML, in particular with Boot-
strap styles, to ePub is properly handled by this script. The script requires a
JSON file describing the content of the book. A typical file for a DocOnce doc-
ument mydoc.do.txt that is translated to HTML and split into a series of files
._mydoc*.html goes as follows:

{
"filename" : "mydoc",
"title" : "Title of the document",
"authors" : [

{
"name" : "Hans Petter Langtangen",
"sort" : "Langtangen, Hans Petter"

}
],
"rights" : "Public Domain",
"language" : "en",
"publisher": "hpl",
"subjects" : ["Science"],
"contributors" : [

{
"name" : "Hans Petter Langtangen",
"role" : "author"

}
],
"identifier" : {

"scheme" : "URL",
"value" : "http://somewhere.net"

},
"contents" : [

{
"type" : "text",
"source" : "._mydoc*.html"

69

http://tex.stackexchange.com/questions/1551/use-latex-to-produce-epub
http://dlmf.nist.gov/LaTeXML/
https://github.com/doconce/ebookmaker

}
],
"toc" : {

"depth" : 2,
"parse" : ["text"],
"generate" : {

"title" : "Index"
}

}
}

Just edit this file, save it as mydoc.json and run python3 /some/path/to/epubmaker.py
mydoc.json to produce mydoc.epub.

If you want to read your DocOnce document on Kindle, sending the PDF
file to the email address for the device seems to work.

Apple iBook Format. A converter to iBooks would be nice. In theory, ePub
documents can be imported and converted to iBooks in the iBooks Author ap-
plication, but ePub files created by ebookmaker.py do not translate well. The
.iba files of iBooks documents can be unzipped and the XML code for the
book made available in index.xml. However, the XML is undocumented and
must be manipulated and filled with the contents of a DocOnce document, e.g.,
by first translating DocOnce to HTML, and then using BeautifulSoup to get an
XHTML version of the HTML that can act as a starting point for filling the XML
file for an iBook. See also other ideas.

Dealing with Mathematics in Formats without LATEX Math Support. If the
document targets formats with and without support of LATEX mathematics, one
can use the preprocessor to typeset the mathematics in two versions. After
#if FORMAT in ("latex", "pdflatex", "html", "sphinx", "mwiki", "pandoc")
one places LATEX mathematics, and after #else one can write inline mathemat-
ics in a way that looks nice in plain text and wiki formats without support for
mathematical typesetting. Such branching can be used with mako if-else state-
ments alternatively:

% if FORMAT in ("latex", "pdflatex", "html", "sphinx", "mwiki", "pandoc"):
!bt
\[\sin^2x + \cos^2x = 1,\]
!et
% else:
!bc

sin^2(x) + cos^2(x) = 1,
!ec
% endif

Mathematics for PowerPoint/OpenOffice. If you have LATEX mathematics
written in DocOnce, it is fairly easy to generate PNG images of all mathematical
formulas and equations for use with PowerPoint or LibreOffice presentations.

1. Make a Sphinx version of the DocOnce file.

70

http://christian-fries.de/blog/files/2012-10-iBooks-Author-LaTeX.html

2. Go to the Sphinx directory and load the conf.py file into a text editor.

3. Search for “math” and comment out the ’sphinx.ext.mathjax’ (enabled
by default) and ’matplotlib.sphinxext.mathmpl’ (disabled by default)
lines, and uncomment the ’sphinx.ext.pngmath’ package. This is the
package that generates small PNG pictures of the mathematics.

4. Uncomment the line with pngmath_dvipng_args = and set the PNG res-
olution to -D 200 when generating mathematics pictures for slides.

5. Run make html.

6. Look at the HTML source file in the _build/html directory: all mathemat-
ics are in img tags with src= pointing to a PNG file and alt= pointing to
the LATEX source for the formula in question. This makes it very easy to
find the PNG file that corresponding to a particular mathematical expres-
sion.

5.3 Macros (Newcommands)

DocOnce supports a type of macros via a LaTeX-style newcommand construc-
tion, but only inside mathematical expressions (inline LATEX math or LATEX math
blocks). Newcommands are not allowed in the running text. Here is an exam-
ple:

\newcommand {\beqa }{\ begin{eqnarray }}
\newcommand {\eeqa }{\ end{eqnarray }}
\newcommand {\ep}{\ thinspace . }
\newcommand {\uvec }{\ vec u}
\newcommand {\Q}{\pmb{Q}}

Notice.

If you desire a newcommand for the running text, using a Mako function
(written in plain Python) is much more flexible. See Section 11.

The newcommands must be defined by the standard LATEX command

\newcommand{name}{ definition}

in a separate file named newcommands*.tex. Use of \def is ignored. Each
newcommand definition must appear on a single line.

Newcommands in a file with name newcommand_replace.tex are expanded
when DocOnce is translated to other formats, except for LATEX (since LATEX per-
forms the expansion itself). Newcommands in files named newcommands.tex
and newcommands_keep.tex are kept unaltered when DocOnce text is trans-
lated to other formats, except for the Sphinx format. (Since Sphinx under-
stands LATEX math, but not newcommands if the Sphinx output is HTML, it

71

makes most sense to expand all newcommands.) Normally, a user will put
all newcommands that appear in math blocks surrounded by !bt and !et in
newcommands_keep.tex to keep them unchanged, at least if they contribute to
make the raw LATEX math text easier to read in the formats that cannot render
LATEX.

5.4 Writing Guidelines (Especially for LATEX Users!)

LATEX writers often have their own writing habits and have preferred LATEX pack-
ages. DocOnce is a simpler format and corresponds to writing in quite plain
LATEX and making the ascii text look nice (be careful with the use of white
space!). This means that although DocOnce has borrowed a lot from LATEX,
there are a few points LATEX writers should pay attention to. Experience shows
that these points are so important that we list them before we list typical Do-
cOnce syntax!

Any LATEX syntax in mathematical formulas is accepted when DocOnce
translates the text to LATEX, but the following rules should be followed when
transalting the text to sphinx, pandoc, mwiki, html, or ipynb formats.

• AMS LATEX mathematics is supported, also for the html, sphinx, and
ipynb formats.

• If you want LATEX math blocks to work with latex, html, sphinx, markdown,
and ipynb, only use the following equation environments: \[... \],
equation*, equation, align*, align. alignat*, alignat. Other en-
vironments, such as split, multiline, gather are supported in mod-
ern MathJax in HTML and Sphinx, but may have rendering problems
(to a larger extent than equation and align). DocOnce performs ex-
tensions to sphinx, ipynb, and other formats such that labels in align
and alignat environments work well. If you face problems with fancy
LATEX equation environments in web formats, try rewriting with plain align,
nonumber, etc.

• Do not use comments inside equations.

• Newcommands in mathematical formulas are allowed, but not in the run-
ning text. Newcommands must be defined in files with names newcommands*.tex.
Use \newcommands and not \def. Each newcommand must be defined
on a single line. Use Mako functions if you need macros in the running
text.

• Use labels and refer to them for sections, figures, movies, and equations
only. MediaWiki (mwiki) does not support references to equations.

• Spaces are not allowed in labels.

• There is just one ref command (no \eqref for equations) and references
to equations must use parentheses. Never use the tilde (non-breaking

72

space) character before references to figures, sections, etc., but tilde is
allowed for references to equations.

• Never use \pageref as pages are not a concept in web documents (there
is only a ref command in DocOnce and it refers to labels).

• Only figures and movies are floating elements in DocOnce, all other ele-
ments (code, tables, algorithms) must appear inline without numbers or
labels for reference4 (refer to inline elements by a section label). The rea-
son is that floating elements are in general not used in web documents,
but we made an exception with figures and movies.

• Keep figure captions shorts as they are used as references in the Sphinx
format. Avoid inline mathematics since Sphinx will strip it away in the fig-
ure reference. (Many writing styles encourage rich captions that explains
everything about the figure; this work well only in the HTML and LATEX
formats.)

• You cannot use subfigure to combine several image files in one figure,
but you can combine the files into one file using the doconce combine_images
tool. Refer to individual image files in the caption or text by (e.g.) “left”
and “right”, or “upper left”, “lower right”, etc.

• Footnotes can be used as usual in LATEX, but some HTML formats are not
able to display mathematics or inline verbatim or other formatted code
(emphasis, boldface, color) in footnotes - keep that in mind.

• Use plain cite for references (e.g., \citeauthor has no counterpart in
DocOnce). The bibliography must be prepared in the Publish format, but
import from (clean) BIBTEX is possible.

• Use idx for index entries, but put the definitions between paragraphs, not
inside them (required by Sphinx).

• Use the \bm command (from the bm package, always included by Do-
cOnce) for boldface in mathematics.

• Make sure all ordinary text starts in column 1 on each line. Equations can
be indented. The \begin{} and \end{} directives should start in column
1.

• If you depend on various LATEX environments for your writings, you have
to give these up, or implement user-defined environments in DocOnce.
For instance, examples are normally typeset as subsections in DocOnce,
but can also utilize a user-defined example environment. Learn about the

4There is an exception: by using user-defined environments within !bu-name and !eu-name
directives, it is possible to label any type of text and refer to it. For example, one can have envi-
ronments for examples, tables, code snippets, theorems, lemmas, etc. One can also use Mako
functions to implement environments.

73

exercise support in DocOnce for typesetting exercises, problems, and
projects.

• Learn about the preprocessors Preprocess and Mako - these are smart
tools for, e.g., commenting out/in large portions of text and creating macros.

• Use generalized references when referring to companion documents that
may later become part of this document (or migrated out of this docu-
ment).

• Follow recommendations for DocOnce books if you plan to write a book.

Use the preprocessor to tailor output.

If you really need special LATEX constructs in the LATEX output from Do-
cOnce, you may use use preprocessor if-tests on the format (typically
#if FORMAT in ("latex", "pdflatex")) to include such special LATEX
code. With an else clause you can easily create corresponding construc-
tions for other formats. This way of using Preprocess or Mako allows you
to use advanced LATEX features (or HTML features for the HTML formats)
to fine tune the resulting document. More tuning can be done by auto-
matic editing of the output file (e.g., .tex or .html) produced by DocOnce
using your own scripts or the doconce replace and doconce subst com-
mands.

Autotranslation of LATEX to DocOnce?

The tool doconce latex2doconce may help you translate LATEX files to
DocOnce syntax. However, if you use computer code in floating list envi-
ronments, special packages for typesetting algorithms, example environ-
ments, subfigure in figures, or a lot of newcommands in the running text,
there will be need for a lot of manual edits and adjustments.

For examples, figure environments can only be translated by doconce
latex2doconce if the label is inside the caption and the figure is typeset
like

\begin{figure}
\centering
\includegraphics[width =0.55\ linewidth]{figs/myfig.pdf}
\caption{This is a figure. \labe{myfig}}

\end{figure}

If the LATEX text is consistent with respect to the placement of the label,
a simple script can autoedit the label inside the caption, but many LATEX
writers put the label at different places in different figures, and then it

74

https://github.com/doconce/setup4book-doconce

becomes more difficult to autoedit figures and translate them to the Do-
cOnce FIGURE: syntax.

Tables are hard to interpret and translate because headings and cap-
tion can be typeset in many different ways. The type of table that is rec-
ognized looks like

\begin{table}
\caption{Here goes the caption .}
\begin{tabular }{lr}
\hline
\multicolumn {1}{c}{v_0} & \multicolumn {1}{c}{$f_R(v_0) $}\\
\hline
1.2 & 4.2\\
1.1 & 4.0\\
0.9 & 3.7
\hline
\end{tabular}
\end{table}

Recall that table captions do not make sense in DocOnce since tables
must be inlined and explained in the surrounding text.

Footnotes are also problematic for doconce latex2doconce since Do-
cOnce footnotes must have the explanation outside the paragraph where
the footnote is used. This calls for manual work. The translator from LATEX
to DocOnce will insert _PROBLEM_ and mark footnotes. One solution is
to avoid footnotes in the LATEX document if fully automatic translation is
desired.

5.5 Typesetting of Algorithms

DocOnce has no support for the typesetting of algorithms, while LATEX has quite
sophisticated support. LATEX writers need a strategy to deal with algorithms in
DocOnce: they should be sophisticated when the output is in LATEX and they
should be readable when the output is in other formats that have no native
support for algorithms.

The simplest solution is to use one of the preprocessors (Preprocess or
Mako) to allow different solutions for different formats. There are basically three
typesetting styles available: LATEX algorithm environments, pseudo code in a
verbatim block, and a nested list. A preprocessor variable, say ALG can be
used to select the typesetting. With Mako we can write

% if ALG == ’latex’:
Write native LaTeX code for the algorithm
% elif ALG == ’code’:
Write pseudo code in (e.g.) a python-like style
!bc pycode
if feature in element:
...
!ec
% elif ALG == ’list’:

75

Use lists to express the algorithm
o if this element has the feature:

* ...
% endif

5.6 Admonitions

DocOnce offers strong support for admonition environments, such as warning
boxes, notification boxes, question boxes, and summary boxes. The boxes
normally have an icon, a heading, and may also have a background color. A
special box, the block, never has an icon and can be used when an icon would
be distracting or misleading. The variety of admonitions and their many type-
setting styles can be seen in this demo.

Examples on Admonition Types. The following admonition environments
are available: block, warning, notice, question, and summary. The box is
defined by begin and end tags such as !bnotice and !enotice. The title of
the box is fully customizable. This means that if you want different types of
boxes, e.g. a detour box and a tip box, you can introduce the convention that
detour applies the summary box and starts with ’Detour:’ in the title, while the
notice box is used for tip boxes and has a title starting with ’Tip:’.

Here are a few examples:

!bwarning
Here is a warning!
!ewarning

!bnotice
This is a notice box with default title.
!enotice

!bnotice Hint
A *Hint* or *Tip* box can use the ‘notice‘ box.
!enotice

!bquestion
How many admonition types are there in DocOnce?
!equestion

!bblock This is a block.
A block never has any icon. A block never has an icon,
but may feature a title. It is often used in slides.
!eblock

!bnotice Going deeper
This is text meant to provide more details. The box has the
layout of the notice box, but a custom title, here *Going deeper*.
!enotice

Finally some summary:

!bsummary
The main message is to utilize the admonition styles for
marking different parts of the text
!esummary

76

http://doconce.github.io/doconce/doc/pub/admon/index.html

The above DocOnce code rendered as

Warning.

Here is a warning!

Notice.

This is a notice box with default title.

Hint.

A Hint or Tip box can, e.g., use the notice box.

Question.

How many admonition types are there in DocOnce?

This is a block.

A block never has any icon. A block never has icon, but may feature a title.
It is often used in slides.

Going deeper.

This is text meant to provide more details. The box has the layout of the
notice box, but a custom title, here Going deeper.

Finally some summary:

Summary.

The main message is to utilize the admonition styles for marking different
parts of the text

77

The layout of admonitions depend on the format. In the rst and sphinx for-
mats one applies the native admonitions, but in sphinx the automake_sphinx.py
script manipulates the HTML file to set a gray background for all admonitions.
There is lots of functionality to control the layout of admonitions in html, latex
and pdflatex.

Layout of Admonitions in HTML. The command-line argument --html_admon
sets the admonition style for the html format (see demo):

• --html_admon=gray for icons with gray background and small font,

• --html_admon=yellow and --html_admon=apricot are similar, but the
icons and colors are different,

• --html_admon=colors has quite bright colors as backgrounds for the dif-
ferent admonitions,

• --html_admon=lyx gives a white background and small icons,

• --html_admon=bootstrap_alert gives the common colored admonition
boxes associated with the Bootstrap HTML styles (only effective if --html_style=boots*),

• --html_admon=bootstrap_panel applies the panel construction in Boot-
strap to make admonition boxes with (normally) white background but a
colored background for the title (only effective if --html_style=boots*),

• --html_admon=paragraph results in a simple paragraph with the admon
title as heading. With --html_admon=paragraph-X, where X is small or
large (or a number less than 100 or grater than 100, resp.). The admon
text is then typeset with a small or large font.

The options --html_admon_bg_color=... and --html_admon_bd_color=...
can be used to override the default background and boundary frame colors of
the admon styles (respectively). These options have only effect for the apricot,
yellow, and gray styles.

Some recommended combinations for admonitions in HTML are

• --html_style=bloodish, --html_admon=gray, --pygments_html_style=none
or --pygments_html_style=default

• --html_style=blueish2, --html_admon=yellow, --pygments_html_style=none
or --pygments_html_style=default

• --html_style=boots*, --html_admon=bootstrap_alert or --html_admon=bootstrap_panel

78

http://doconce.github.io/doconce/doc/pub/admon/index.html

Layout of Admonitions in LATEX. In latex and pdflatex, the type of admo-
nition style is set by the command-line option --latex_admon=. Several values
are available (see demo):

• paragraph is the simplest type of admonition and typeset as plain text
with an optional paragraph heading. The variant paragraph-X typesets
the paragraph with font size X, where X can be large, small, footnotesize,
or tiny. With the X specification there is also some small space above
and below the admon.

• colors1 (inspired by the original NumPy User Guide in LaTeX/PDF) ap-
plies different colors for the different admons with an embedded icon.

• colors2 is like colors1 but the text is wrapped around the icon.

• mdfbox is the default and gives rounded white boxes with a potential title
and no icon (using the very flexible mdframed packaged in LATEX).

• graybox2 has square corners, gray background, and is narrower than
mdfbox. One special feature of graybox2 is the summary admon, which
has a different look with horizontal rules only, and for A4 format, the sum-
mary box is half of the text width and wrapped with running text around
(if it does not contain verbatim text, the standard graybox2 style is used).
This small summary box is effective in proposals to disperse small para-
graphs of key points around.

• grayicon has icons and a light gray background.

• yellowicon has icons and a light yellow background.

There is also an option --latex_admon_color=... that can be used to
override the default color. Values are either saturated colors like gray!10 or
an RGB tuple 0.95,0.91,0.97. The chosen color replaces all default colors
for all admon styles except paragraph. For example, an oval gray box is pro-
duced by --latex_admon=mdfbox and ’--latex_admon_color=gray!10’ (note
the quotes: they are necessary to avoid a Bash error due to the exclamation
mark in the color specification).

The mdfbox admonition styles has boxes with many possibilities for cus-
tomization by editing the .tex file. For example, linecolor sets the color of
the frame border and frametitlebackgroundcolor sets the background color
of the title area. A dark blue frame and a light blue background for the title is
produced by this automatic edit:
doconce replace ’linecolor=black ,’ ’linecolor=darkblue ,’

mydoc.tex
doconce subst ’frametitlebackgroundcolor =.*?,’

’frametitlebackgroundcolor=blue!5 mydoc.tex

79

http://doconce.github.io/doconce/doc/pub/admon/index.html

By default, admonition titles without a period, exclamation mark, or colon at
the end will get a period at the end. For some LATEX admonitions (e.g., mdfbox),
it may be natural to view the title with a heading without any period. The
command-line option --latex_admon_title_no_period avoids appending a
period.

LATEX code Environments Inside Admonitions. Sometimes one sets a spe-
cial background color in the admonitions and colored code blocks that look
fine in the running text, but that may be inappropriate inside admonitions. The
option --latex_admon_envir_map=... is used to map an environment (usu-
ally for code) to a new style inside admonitions. Specifying a number, say 2,
as in --latex_admon_envir_map=2, appends the number to all environments
inside admonitions, so !bc pycod becomes effectively !bc pycod2. Then,in
doconce ptex2tex (or in the ptex2tex configuration file), one can then specify
the typesetting of the pycod2 environment. Otherwise the specification must
be a mapping for each envir that should be changed inside the admons:

--latex_admon_envir_map=pycod-pycod_yellow,fpro-fpro2

i.e., a from-to, from-to type of syntax. In this particular example, the !bc pycod
environment becomes !bc pycod_yellow and !bc fpro becomes !bc fpro2
inside admonitions.

The Box Environment. A plain box without any title or colored background,
just a rectangular frame, is also available. The syntax goes like

!bbox
!bt
\[\nabla\cdot\bm{u} = 0 \quad\hbox{(mass balance)}\]
!et
!ebox

resulting in

∇ · u = 0 (mass balance)

Admonitions are usually used to typeset something that should be distinct
from the running text: a warning, a remark, a notification, a question, a sum-
mary, while a box is often used to highlight a key finding in the running text: an
equation, a hypothesis, a theorem, a rule, or a conclusion.

5.7 User-Defined Environments

LATEX writers are often fond of their favorite environments and think that formats
like DocOnce, Markdown, and HTML are primitive without these environments.
DocOnce, however, offers user-defined environments with begin and end tags,
just like LATEX. This section explains how to define such user-defined environ-
ments.

80

Remark. Special environments can always be implemented by Mako code
as illustrated in Section 11.6, but the DocOnce user-defined environments are
easier to use.

For example, suppose you want to typeset examples using a native example
environment in LATEX, while other formats can simply typeset examples as sub-
sections. You can then introduce your own example environment in DocOnce
and write the environment like this:

!bu-example Addition label=ex:math:1p1
We have

!bt
\[1 + 1 = 2 \]
!et
!eu-example

The convention for this type of examples is to have a title, and the title line may
feature label=xxx, where we can use xxx as a label for the example. The
example environment above is (in the present output format) typeset like this:

Example 5.1. Addition.
We have

1 + 1 = 2

or in tabular form:

Problem Result
1 + 1 2

The definition of the example environment must be done in a Python module
userdef_environments, located in the same directory as the DocOnce source
code or the parent directory. In this file (userdef_environments.py), we must
provide a dictionary envir2format for translating an environment into the right
code for a specific format:
envir2format = {

’intro’: {
’latex’: r"""

\usepackage{amsthm}
\theoremstyle{definition}
\newtheorem{example}{Example}[section]
""",},

’example ’: {
’latex’: example ,
’do’: do_example ,
},

}

The intro key contains initializing statements for the LATEX and HTML formats
(the preamble and the head tag, respectively). Here, we need the amsthm pack-
age and a definition of the example environment in LATEX. No initialization is

81

needed for HTML. The other keys are the names of the environments. For
each environment, we use a function to format the code for a specific output
format. The do key is a default DocOnce formatting, expressed in DocOnce
syntax and applied if the output format is not present among the other keys.
The LATEX output is defined by the function example:

def example(text , titleline , counter , format):
""" LaTeX typesetting of example environment ."""
label , titleline = get_label(titleline)
s = r"""

\begin{example}
"""

if label:
s += ’label{%s}\n’ % label # no \ (is added by DocOnce)

s += r"""
\noindent\emph{%s}.

%s
\end{example}
""" % (titleline , text)

return s

def get_label(titleline):
"""
Extract label from title line in begin environment .
Return label and title (without label).
"""
label = ’’
if ’label=’ in titleline:

pattern = r’label =([^\s]+)’
m = re.search(pattern , titleline)
if m:

label = m.group(1)
titleline = re.sub(pattern , ’’, titleline).strip()

return label , titleline

The arguments are text for the body of the environment, titleline for the
title (everything that comes after !bc-example on the line), an integer counter
that counts the number of the current environment (1, 2, and so on, which can
be used for reference as an alternative to the label), and the format string
holding the user’s output format. In the present case, we add the label inside
the example environment if we have a label in the title, and we typeset the
title in the emphasize font. Otherwise, we rely on the standard example (or
newtheorem) LATEX environment.

In HTML and other formats, we simply typeset the example as a subsection:
def do_example(text , titleline , counter , format):

""" General typesetting of example environment via a
section . """

label , titleline = get_label(titleline)
s = """

===== Example %d: %s =====
""" % (counter , titleline)

if label:

82

s += ’label{%s}\n’ % label
s += ’\n%s\n\n’ % text
return s

We quickly encounter a problem when referring to a specific example. In
LATEX, we want to write Example~\ref{label}, using the label defined in the
example heading. In other formats, this label is a section number, or usually
the section (example) heading. Different wording is needed for different formats.
This is easiest accomplished by a little Mako function in the top of the DocOnce
source:

<%
def refex(label, capital=False):

if FORMAT in (’latex’, ’pdflatex’):
return ’Example ref{%s}’ % label

else:
s = ’The ’ if capital else ’the ’
s += ’example in Section ref{%s}’ % label
return s

%>

We can then write something like

${refex(’ex:test:1p1’, capital=True)} demonstrates how to do 1+1.
That is, the calculation 1+1 appears in ${refex(’ex:test:1p1’)}.

Note that we distinguish between capital=True, where the example reference
opens a sentence, and capital=False, where the reference appears later in
the sentence. In HTML we see the difference:

The example in the section
Example 1: A test function
demonstrates how to do 1+1.
That is, the calculation 1+1 appears in the example in the section
Example 1: A test function.

while there is no difference in LATEX since we refer to Example with capital E
anyway:

Example~\ref{ex:test:1p1} demonstrates how to do 1+1.
That is, the calculation 1+1 appears in Example~\ref{ex:test:1p1}.

To summarize, the example environment together with the refex Mako function
allows you to work with native LATEX example environments, while there is a neat
alternative solution for all other formats.

Enumerated environments.

It is also possible to make enumerated environments such that their ‘ref‘s
use numbers instead of section headings in HTML format (just like Fig-
ures do). This mimics LATEX behaviour on theorem-style environments.
See the example in DocOnce repository.

83

https://github.com/doconce/doconce/blob/master/doc/src/userdef_envirs/enumerated_envs

You may take a look at a complete userdef_environments.py file to see
this example environment and another highlight environment where we define
blue boxes in LATEX and HTML and rely on a standard notice admon for all other
formats. The highlight environment is written like

!bu-highlight Highlight box!
This environment is used to highlight something:

!bt
\[E = mc^2 \]
!et
!eu-highlight

and typeset as

Highlight box!

This environment is used to highlight something:

E = mc2

Tip: Test userdef_environments.py!

Make sure you run the userdef_environments.py file to check that all
syntax is correct:

Terminal> python userdef_environments.py

A common error is to have the envir2format dictionary defined before
the functions it refers to.

A complete example showing how one can create tailored environments
for computer code, using --latex_code_style, in particular the following one
(with a caption),

appears at the end of the document Demonstration of DocOnce support for
LATEX code block environments.

Other examples are available in the DocOnce repository.

84

https://github.com/doconce/doconce/blob/master/doc/src/manual/userdef_environments.py
http://doconce.github.io/doconce/doc/pub/latexcode/demo.html
http://doconce.github.io/doconce/doc/pub/latexcode/demo.html
https://github.com/doconce/doconce/blob/master/doc/src/userdef_envirs

6 Bibliography (References)

DocOnce applies the software tool Publish to handle the bibliography in a doc-
ument. With Publish it is easy to import BIBTEX data and maintain a database
in a clean, self-explanatory textual format. From the Publish format it is easy to
generate BIBTEX and reST, or apply straightforward DocOnce typesetting (and
from there generate HTML, plain text, wiki formats, and so on).

Installing Publish is trivial: either do

Terminal> pip install -e \
git+https://github.com/doconce/publish#egg=publish

or checkout the code on github.com:

Terminal> git clone https://github.com/doconce/publish
Terminal> cd publish
Terminal> python setup.py install

6.1 Importing your data to the Publish database

Many scientists have their bibliographic data in the BibTex format. Here we
assume that you have two files, refs1.bib and refs2.bib. These can be im-
ported to a Publish database, residing in the file papers.pub, by the commands

publish import refs1.bib
publish import refs2.bib

During import, Publish may ask you to accept the name of new institutions or
journals. Publish already have a database of journals and institutions/depart-
ments, but when you add new ones, you also get a file venues.list (in the
current working directory) which will be used for future imports in this directory.
Make sure you store publish.pub and venues.list along with your DocOnce
document files (they do not need to reside in the same directory, but make sure
you add them to your version control system).

Importing big BIBTEX databases may represent a lot of work.

You will get error messages if your BIBTEX database does not comply
to the strict BIBTEX syntax required by Publish (entry names must be in
lower case, their values must be surrounded by curly braces). Publish
will also check the names of all journals and detect duplicate entries. For
databases automatically created by a modern web tools for references,
the BIBTEX file may need a lot of edits before it can be accepted by Publish.
Consider using a script to automate many of the edits.

85

https://github.com/doconce/publish
https://github.com/doconce/publish

6.2 Requirements to input data

Notice.

Note that Publish only accepts BIBTEX files where the keys (author, title,
etc.) are in lower case and where the data are enclosed in curly braces.
You may need to edit your BIBTEX files to meet this demand.

The utility doconce fix_bibtex4publish file.bib fixes several known is-
sues with BIBTEX files such that Publish has a better chance of accepting the
entries. Run this utility first, then run Publish, respond to any requirements
Publish spits out, remove papers.pub if it exists, and run the import statements
again.

Although references are visible as numbers only in the output, it is recom-
mended to apply a nice, consistent typesetting of your keys. It is suggested to
use the following scheme:

Langtangen_2003a # single author
Langtangen_Pedersen_2002 # two authors
Langtangen_et_al_2002 # three or more authors

One can add a, b, c, and so forth if several keys feature the same authors and
year.

6.3 Adding new references to the database

When you get new BIBTEX references, simply put them in a file, say refs3.pub
and run publish import refs3.pub command to update the database. You
may also consider editing the papers.pub file directly when adding new refer-
ences.

6.4 Exporting the database

Exporting everything in the database to BIBTEX is done by

publish export mybibtexfile.bib

You can easily export subsets of the database, e.g., only papers associated
with a particular author (the Publish manual has details on how this is done).
DocOnce will automatically export the database to BIBTEX if the output format
is latex or pdflatex.

6.5 Referring to publications

We use the command

cite{key}

86

to refer to a publication with bibliographic key key. Here is an example: [6]
discussed propagation of large destructive water waves, [5] gave an overview
of numerical methods for solving the Navier-Stokes equations, while the use of
Backward Kolmogorov equations for analyzing random vibrations was investi-
gated in [4]. The book chapter [7] contains information on C++ software tools
for programming multigrid methods. A real retro reference is [3] about a big
FORTRAN package. Multiple references are also possible, e.g., see [6, 7].

A LaTeX-style cite command with additional detailed reference is also pos-
sible,

cite[details]{key}

for example as in [5, Section 2] or [5, Equation (4.2)].
In LATEX, the cite command is directly translated to the corresponding LATEX

version of the command with a backslash; in reST and Sphinx the citations
becomes links, with the citation keys as names; in HTML the citations are num-
bered from 1, 2, and so forth according to their appearance, and the numbers
appear as links; while in other formats the citations are the keys inside square
brackets and the corresponding references are listed in the order they are cited.

6.6 Specifying the Publish database

The specification of the Publish database file in the DocOnce document is done
one a line containing BIBFILE: papers.pub (you may give the database file
another name and store it in another directory). The references will be inserted
at the place where this command appears. Before the command you may want
to have a headline with “References”, “Bibliography”, or similar. Here is an
example:

======= References =======

BIBFILE: papers.pub

In LATEX and PDFLATEX the papers.pub file is exported to BIBTEX format and
included in the document, while in all other formats, suitable text is produced
from the database.

6.7 LATEX Bibliography Style

The bibliography style is “plain” in LATEX output. To change this, just edit the
.p.tex file. For example,

doconce format latex mydoc
doconce replace ’bibliographystyle{plain}’ ’bibliographystyle{abbrev}’ mydoc.p.tex

87

7 Preprocessing and Postprocessing

DocOnce allows preprocessor commands for, e.g., including files, leaving out
text, or inserting special text depending on the format. These commands are
run prior to translation of the document. After translation, there are doconce split_*
commands available for splitting HTML and Sphinx documents into smaller
pieces (web pages) as a postprocess. Each split is performed where the doc-
ument writer has inserted a !split command (starting in the first column of a
line and being the only text on that line):

Split document here
!split
======= New section =======

7.1 The Preprocess and Mako Preprocessors

Two preprocessors are supported: preprocess (https://github.com/doconce/
preprocess) and mako (http://www.makotemplates.org/). The former al-
lows include and if-else statements much like the well-known preprocessor in
C and C++ (but it does not allow sophisticated macro substitutions). The latter
preprocessor is a very powerful template system. With Mako you can automat-
ically generate various type of text and steer the generation through Python
code embedded in the DocOnce document. An arbitrary set of name=value
command-line arguments (at the end of the command line) automatically de-
fine Mako variables that are substituted in the document.

DocOnce will detect if preprocess or Mako commands are used and run
the relevant preprocessor prior to translating the DocOnce source to a specific
format.

The preprocess and mako programs always have the variable FORMAT de-
fined and indicates the desired output format of DocOnce (html, latex, plain,
rst, sphinx, epydoc, st). It is then easy to test on the value of FORMAT and
take different actions for different formats. Below is an example:

First some math:

!bt
\begin{align}
x &= 3
label{x:eq1}\\
y &= 5
label{y:eq1}
\end{align}
!et
Let us now reason about this.

Sphinx cannot refer to labels in align environments

#if FORMAT in ("latex", "pdflatex", "html")
From (\ref{x:eq})-(\ref{y:eq1}) we get that
#elif FORMAT == "sphinx"
From

88

https://github.com/doconce/preprocess
https://github.com/doconce/preprocess
http://www.makotemplates.org/

!bt
\[x = 3 \]
!et
and
!bt
\[y= 5 \]
!et
it follows that
#else
From the above equations it follows that
#endif
$x+y$ is 8.

A variable DEVICE is also defined. It equals screen by default, but the
command-line argument –device=paper can set DEVICE to paper (or another
value). Testing on DEVICE inside the document makes it possible to test if the
output is on paper media, screen, or a particular device.

Other user-defined variables for the preprocessor can be set on the com-
mand line as explained in Section 12.

More advanced use of mako can include Python code that may automate
the writing of parts of the document.

On the type of a Mako variable from the command line.

You define Mako variables as in this example:

Terminal> doconce format html mydoc LANG=C NO=4 COMMENTS=False

The variable LANG gets the value ’C’ as a Python string inside the docu-
ment. All values are treated as strings, except if the value is True or False
or if it is an integer. Therefore, NO becomes the integer 4 and you can test
for this like % if NO > 4:. The variable COMMENTS gets the boolean value
False and % if not COMMENT: is a positive test. With Mako variables
set on the command-line you can easily leave out portions of the docu-
ment or choose between different versions of the text in a very flexible
and fine-tuned way.

Advanced setting of Mako variables.

Mako variables can also be run through eval before being sent to Mako.
For example,

Terminal> doconce format latex mydoc \
SOMEVAR="eval([’problem’, ’data’, ’results’])"

Now, SOMEVAR will be defined by
SOMEVAR = eval("[’problem ’, ’data ’, ’results ’]")

89

and result in the list [’problem’, ’data’, ’results’]. In a DocOnce
document, we can write

% for element in SOMEVAR:
* "‘${element}.pdf‘": "http://some.net/pdf/${element}.pdf"

% endfor

and produce the following LATEX code:

\begin{itemize}
\item

\href{{http :// some.net/pdf/problem.pdf }}{\ nolinkurl{problem.pdf}}

\item
\href{{http :// some.net/pdf/data.pdf }}{\ nolinkurl{data.pdf}}

\item
\href{{http :// some.net/pdf/results.pdf }}{\ nolinkurl{results.pdf}}

\end{itemize}

Instead of giving the SOMEVAR list on the command line, we can hardcode
it inside the document:

<%
SOMEVAR = [’problem’, ’data’, ’results’]
%>

The flexibility enabled by Mako variables and statements is one of the
major reasons to adopt DocOnce.

7.2 Splitting Documents into Smaller Pieces

Long documents are conveniently split into smaller DocOnce files. However,
there must be a master document including all the pieces, otherwise references
to sections and the index will not work properly. The master document is prefer-
ably a file just containing a set of preprocessor include statements of the form
#include "file.do.txt". The preprocessor will put together all the pieces
so that DocOnce sees a long file with the complete text.

Include another file
#include "../chapter10/chapter10.do.txt"

Include parts of another file
#include "../chapter10/exercises/exercises.do.txt" fromto: ===== Exercise: 1 =====@={5,7}\sConcluding\s={5,7}

The first example implies that all lines in the file chapter10.do.txt are copied
into the master document. The second line has a fromto: directive, which im-
plies copying all lines in the exercises.do.txt file included between the matches
of two regular expressions (in the example ===== Exercise: 1 ===== and
‘===== Concluding =====).

90

Two regular expressions, separated by the @ sign, define the "from" and
"to" lines. The "from" line is included in the verbatim block, while the "to" line
is not. In the example above, we copy code from the line matching =====
Exercise: 1 ===== and the section/subsection with title Concluding (the word
Concluding surrounded by space and 5 to 7 equal signs).

For web documents it is often desired to split long pages into shorter ones.
This is done by the DocOnce command !split placed at the beginning of a
line. The !split commands works with output in html, rst, sphinx, latex, and
pdflatex. The !split command is normally placed before section headings.
It is used often when writing slides with DocOnce. The doconce format com-
mand does not recognize !split instructions: one needs to run doconce split_*
as a postprocess, where the * means html, rst, or beamer.

HTML. Splitting an HTML document is done by

Terminal> doconce format html mydoc
Terminal> doconce split_html mydoc

The mydoc.html document created by the first command is replaced by a
new HTML file, representing the first part of the document, after the second
command. The various files that constitute the parts of the document are
listed after the split_html command. The files have names mydoc.html,
._mydoc000.html (equal to mydoc.html), ._mydoc001.html, ._mydoc002.html,
and so on. Recall that all the parts are needed if the HTML document is to be
moved to another location (you can always check .mydoc_html_file_collection
for a list of all the files that are needed to display this HTML document).

MathJax cannot refer to equations defined in other HTML files, but the
doconce split_html fixes this problem. Note, however, that running doconce split_html
leads to another equation numbering than in the original HTML document. In
the latter, we use AMS equation numbering, which means that the standard
LATEX conventions are followed, while in the split document only the subset of
equations with labels are given numbers.

The HTML documents have by default very simple navigation buttons for
the previous and next document. These buttons are customizable:

Terminal> doconce split_html mydoc.html --nav_buttons=X

where X can be text (pure text “Previous” and “Next”, no buttons), gray1,
gray2, bigblue, blue, or green as shown here, respectively (from left to right):

However, if --html_theme= is set any theme starting with bootstrap or
bootswatch, the navigation buttons are ignored, and Bootstrap-style buttons
are used.

91

reStructuredText and Sphinx. Here is a typical split of a large Sphinx docu-
ment mydoc.rst into smaller pieces:

Terminal> doconce format sphinx mydoc
Terminal> doconce split_rst mydoc
Terminal> doconce sphinx_dir author="Some Author" \

title="Short title" theme=fenics dirname=mydir mydoc
Terminal> python automake_sphinx.py

The doconce format sphinx mydoc command is needed to produce mydoc.rst,
which is the starting point for the doconce split_rst command. The various
files that constitute the complete Sphinx document are mydoc.rst, ._mydoc000.rst,
._mydoc001.rst, ._mydoc002.rst, and so on. The automake_sphinx.py script
ensures that the Sphinx document is compiled correctly. If all links to local files
are in a _static directory, the whole Sphinx document exists in a complete
version in the compiled directory (usually sphinx-rootdir/_build/html) and
can easily be moved around.

Split and LATEX. LATEX Beamer slides generated from DocOnce source also
apply !split to indicate the start of individual slides. However, the split is
performed by the doconce slides_beamer command and does not result in
individual files like split_rst and split_html do.

8 Writing Slides

It is a potentially fast procedure to make slides from large amounts of DocOnce
text, in particular for condensing material for lectures or for providing the slide
set as an overview or study guide. The slides can be ordinary separate slides
or a document with much briefer text and emphasis on bullet lists, figures, math-
ematical formulas, admonitions, etc.

Points to consider (just sketches...):

• Only some pygments styles are suited for a particular reveal.js/deck.js
theme

• Only some admon styles are appropriate

• Admon styles are erased in reveal

• Use --keep_pygments_html_bg to avoid big changes in background color
for code

• pause command for pop-up in Beamer slides (ignored in other formats).

• Can use PowerPoint or Google Presenter to design a slide and then save
as image (GP directly, PP via Save as Picture or Save As + choosing
image type, and then all or present slide only), then import image in
doconce. LATEX formulas in image are easiest created as PNGs using
http://www.codecogs.com/latex/eqneditor.php.

92

http://www.codecogs.com/latex/eqneditor.php

• From doconce to PP or GP: use the latexslides script to convert to PDFs
and odp format, convert odp to ppt interactively or with unoconv.

• Sections (7 =) are used to indicate sections in slides (gives a toc in
beamer slides), while subsections (5 =) are used for slide headings. Re-
member !split before each slide (subsection). A comment # Short title: title
after a section is interpreted in latex and pdflatex output as a short ti-
tle for the section. (Short titles for sections in ordinary text files are not
supported.)

8.1 Overview

Slide Types. DocOnce can generate two types of slides: HTML5+CSS3 type
of slides to be presented through a web browser, and classical LATEX Beamer
slides. A comprehensive demo shows the range of possible layouts.

The following types of output are supported:

• LATEX:

– Beamer slides

• HTML5:

– reveal.js

– deck.js

– CSSS

– dzslides

• Markdown:

– Remark

Syntax. Basically, DocOnce slides are ordinary DocOnce text with !split
inserted before each slide. Nevertheless, contents of slide differ considerably
from ordinary running text. Some guidelines on the elements within each slide
are necessary to produce effective slide sets:

• Use a section heading (7 =) for dividing a presentation into parts. There
can be text or figure(s) after the heading to illustrate the part.

• Use a subsection heading as slide heading (5 =).

• Limit the amount of running text (as always).

93

http://doconce.github.io/doconce/doc/pub/slides/demo/index.html
http://en.wikibooks.org/wiki/LaTeX/Presentations
http://lab.hakim.se/reveal-js/#/
http://imakewebthings.com/deck.js/
http://leaverou.github.io/CSSS/#intro
http://paulrouget.com/dzslides/
http://remarkjs.com/#1

• Limit the amount of material so it fits within a slide (inspect slides visually
to move or delete content - just an extra !split and a new heading is
enough to make a new slide).

• Use the pop environment to pop up list items or blocks one by one.

• You can use \pause prefixed by (*@ and postfixed by @*) inside code or
math blocks to pop up code lines or formulas in Beamer slides (the pause
command is simply ignored in other formats).

• Use the slidecell environment (see below) to create a grid of slide cells
(makes it easy to move figures and bullet lists or text around).

• Adjust the size of figures (width parameter for HTML, frac parameter for
LATEX Beamer) so they become effective on the slide.

8.2 Slide Elements

Title page. Here is a typical title page:

TITLE: On Something Interesting
AUTHOR: O. Nordmann at Seg. Fault Ltd. & D. Bug Inc.
AUTHOR: John Doe Email: john.doe@mail.com at Progress Ltd.
AUTHOR: Chan Siu Ming at Progress Ltd & Moon University
DATE: today

FIGURE: [fig/logo, width=300 frac=0.3]

Parts Page. Parts of the presentation are divided by section headings. Here
we also add some keywords in a bullet list on the left and a figure on the right.
The !bslidecell XY f command starts the definition of a cell in a grid of cells
in the slide. The XY part defines the coordinates of the cell, 00 is upper left, 01
is upper right. The f parameter specifies the fraction of the width occupied by
this column of cells (can be left out, which results in columns of equal widths).

!split
======= Problem setting and methods =======
Short title: Problem

!bslidecell 00 0.4

* Scope
* Focus
* Approach

!eslidecell

!bslidecell 01 0.6
FIGURE: [fig/method, width=600 frac=0.7]
!eslidecell

The # Short title: ... line can be used to define a short title for slide for-
mats with navigation (where long titles are inappropriate), e.g., Beamer PDF
slides.

94

Standard bullet list page. Bullet lists are typeset as usual in DocOnce:

!split
===== Methods =====

* Slow:
* Pick-and-choose
* Foxtrot

* Fast:
* Quickstep
* MMST
* PQR

Some prefer the bullet list or other contents of the slide to appear in a frame
or Beamer block (potentially with shadows in some Beamer styles). This design
is enabled by putting the contents inside the block environment:

!split
===== Methods =====

!bblock Methods are slow or fast:
* Slow:

* Pick-and-choose
* Foxtrot

* Fast:
* Quickstep
* MMST
* PQR

!eblock

The block title is optional.
One can easily pop up one item at a time using !bpop and !epop:

!split
===== Methods =====

!bblock Methods are slow or fast:
!bpop
* Slow:

* Pick-and-choose
* Foxtrot

* Fast:
* Quickstep
* MMST
* PQR

!epop
!eblock

Equations, movies, figures. Standard DocOnce elements and formatting
work in slides too:

!split
===== Key formulas =====

!bt
\[a = b \]
!et

FIGURE: [fig/a_eq_b, width=500 frac=0.4]

MOVIE: [mov/animate_a_eq_b]

95

Here is another example on math and code:

!split
===== Example =====

!bblock Problem:
Solve $ax+b=0$.
!eblock

!bblock Solution:
$x=-b/a$
!eblock

!bblock Implementation:
!bc pypro
import sys
a = float(sys.argv[1])
b = float(sys.argv[2])
x = -b/a
print(x)
!ec
!eblock

8.3 HTML5 Slides

Not yet written...
Just a very preliminary sketch of commands:

Terminal> doconce format html myslides \
--pygments_html_style=native --keep_pygments_html_bg

Terminal> doconce slides_html myslides reveal \
--html_slide_theme=darkgray

Potential Problems.

• Some newer versions of Firefox do not show the rounded corners of ad-
monition boxes, e.g., notice and warning (tested on Ubuntu)

• DocOnce performs some adjustments of the spacing around equations.
More edits (automated with doconce subst) might be needed.

8.4 LATEX Beamer Slides

Themes. Four themes come with DocOnce: X_Y, where X is blue or red
(the main color of the slides) and Y is plain for simple layout and shadow for
shadowed boxes and more visual structure in the slides.

Pop list items and blocks. The !bpop and !epop directives have the follow-
ing effect in Beamer slides:

• If !bpop comes right before the beginning of a list, each list item is popped
up, one at a time.

96

http://doconce.github.io/teamods/doconce/demo/demo_red_plain.pdf
http://doconce.github.io/teamods/doconce/demo/demo_blue_shadow.pdf

• Otherwise, the rest of the slide or the text until the next !bpop pops up all
at once.

Compilation. The cycle is

• doconce format pdflatex mydoc for producing mydoc.p.tex

• doconce ptex2tex or ptex2tex for translating mydoc.p.tex to mydoc.tex

• doconce slides_beamer mydoc.tex to produce a Beamer version mydoc.tex

• standard PDFLATEX compilation of mydoc.tex

9 Support for non-English

DocOnce can handle documents in other languages than English. At the time
of this writing there is support for Basque, German and Norwegian. Please
create an issue at https://github.com/doconce/doconce/issues to request
support for additional languages.

A demo directory with files is locale. For example, norsk.do.txt contains
a simple document in Norwegian. To compile, one must supply the options
–encoding=utf-8 –language=Norwegian:

Terminal> doconce format html norsk \
--html_style=bootstrap_FlatUI \
--encoding=utf-8 --language=Norwegian

10 Misc

10.1 Missing Features

DocOnce does not aim to support sophisticated typesetting, simply because
sophisticated typesetting usually depend quite strongly on the particular output
format chosen. When a particular feature is not supported by DocOnce, it is
recommended to hardcode that feature for a particular format and use the if-
else construction of the preprocessor. For example, if a sophisticated table is
desired in LATEX output, do something like

#if FORMAT in ("latex", "pdflatex")
insert native LaTeX code for fancy table
#else
insert a DocOnce-formatted "inline" table
#endif

97

https://github.com/doconce/doconce/issues
https://github.com/doconce/doconce/tree/master/doc/src/locale

Similarly, if certain adjustments are needed, like pagebreaks in LATEX, hard-
code it in the DocOnce format (and recall that this is really LATEX dependent -
pagebreaks are not relevant HTML formats).

Instead of inserting special code in the DocOnce document, one can script
editing of the output from DocOnce. That is, develop a Python or Bash script
that runs the translation of a DocOnce document to a document in another
format. Inside this script, we may edit and fine-tune the output from DocOnce.

10.2 Git .gitignore File

For DocOnce repositories using the Git version control system, the following
.gitignore file is useful:

syntax: glob
doconce files:
*.rst
*.ipynb
*.gwiki
*.cwiki
*.mwiki
*.pdf
*.tex
automake_sphinx.py
.*_html_file_collection
.*.exerinfo
.*.copyright
sphinx-rootdir
Trash
papers.bib
compiled files:
*.o
*.so
*.a
temporary files:
build
*.bak
*.swp
*~
.*~
*.old
tmp*
temp*
.#*
\#*
tex files:
*.log
*.dvi
*.aux
*.blg
*.bbl
*.idx
*.ilg
*.ind
*.loe
*.nav
*.out
*.toc
*.snm
*.vrb

98

eclipse files:
*.cproject
*.project
misc:
.DS_Store
.idea
__pycache__
_minted-*

10.3 Emacs DocOnce Formatter

The file .doconce-mode.el in the DocOnce source distribution gives a "Do-
cOnce Editing Mode" in Emacs.

Here is how to get the DocOnce Editing Mode in Emacs: Download .doconce-
mode.el and save it in your home directory, then add these lines to /.emacs:

(load-file "~/.doconce-mode.el")

Emacs will now recognize files with extension .do.txt and enter the DocOnce
Editing Mode.

The major advantage with the DocOnce Editing Mode in Emacs is that many
keyboard shortcuts are defined:

Emacs key Action
Ctrl+c f figure
Ctrl+c v movie/video
Ctrl+c h1 heading level 1 (section/h1)
Ctrl+c h2 heading level 2 (subsection/h2)
Ctrl+c h3 heading level 2 (subsection/h3)
Ctrl+c hp heading for paragraph
Ctrl+c me math environment: !bt equation !et
Ctrl+c ma math environment: !bt align !et
Ctrl+c ce code environment: !bc code !ec
Ctrl+c cf code from file: @@@CODE
Ctrl+c table2 table with 2 columns
Ctrl+c table3 table with 3 columns
Ctrl+c table4 table with 4 columns
Ctrl+c exer exercise outline
Ctrl+c slide slide outline
Ctrl+c help print this table

Typing Ctrl+c help prints the above table in Emacs. Try the different shortcuts
and see how handy they are to learn DocOnce and reduce on the amount of
typing!

10.4 Atom Syntax Highlighting for DocOnce

There is a package for the Atom editor available at https://atom.io/packages/
language-doconce which provides syntax highlighting for DocOnce.

99

https://github.com/doconce/doconce/blob/master/misc/.doconce-mode.el
https://raw.github.com/doconce/doconce/master/misc/.doconce-mode.el
https://raw.github.com/doconce/doconce/master/misc/.doconce-mode.el
https://atom.io/
https://atom.io/packages/language-doconce
https://atom.io/packages/language-doconce

11 Mako Programming

The Mako templating engine is used as a preprocessor for DocOnce docu-
ments. However, Preprocess runs prior to Mako and should be used to include
other files via # #include "filename" (see section 7.2). Preprocess is suffi-
cient for if-else tests to steer which parts of the text are to be compiled. For
more demanding tasks, use Mako, which resembles a real programming lan-
guage.

Warning.

Unfortunately, the combination of Mako and LATEX mathematics may lead
to problems because Mako applies syntax like ${var} to extract variables
or call functions, while LATEX mathematics sometimes applies the same
syntax, e.g., ${\cal O}(\Delta x^2)$ which looks like a Mako function
call. This problem can give rise to strange error messages from Mako
(usually that a variable is not defined). The solution is to avoid such
Mako-style syntax when writing LATEX mathematics, e.g., by defining new-
commands if it is otherwise problematic.

11.1 The Basics of Mako

Just a preliminary sketch of some Mako code (next example is better!):

Define variables
<%
mycounter = 1
mydict = {}
%>

Assume MYVAR is given on the command line as MYVAR=mytext (e.g.)
% if MYVAR is not UNDEFINED:
The value of MYVAR is ${MYVAR}.
% endif

<%
Manipulation of variables
mycounter += 1
%>

% if MYVAR in (2,4,6):
MYVAR is even integer in [2,6].
% elif MYVAR > 1000000:
MYVAR is big.
% else:
MYVAR=${MYVAR}, mycounter=${mycounter}.
% endif

Function
<%
Define Python function: FORMAT and DEVICE
are always defined

100

http://docs.makotemplates.org/
http://code.google.com/p/preprocess

def link(filename):
url = "https://github.com/some/path/to/’ + filename + ’"’
if DEVICE == ’screen’:

make link to url
return ’"filename":’ + url

elif DEVICE == ’paper’:
write URL explicit on paper
return ’URL:’ + url

%>

<%doc>
This
is
a
block
comment in Mako.
</%doc>

11.2 Debugging Python code in Mako

Although it is easy to put Python code inside <% and %> directives, it may quickly
become a nightmare to debug the Python code. If Mako reports a syntax error
in the Python code, it is recommended to debug the Python code outside of
Mako. That is, copy all Python code to a separate file and run it as standard
Python code. This will give much more precise (and familiar) error messages.

A setup that is easy for developing and maintaining the Python code used
in Mako goes as follows. Different pieces of Python code in Mako is placed in
separate files and included via the Preprocess preprocessor in the DocOnce
document. For instance,

Define Mako variables and basic functions
<%
#include "variables.py"
#include "basic_functions.py"
%>

Some DocOnce text

Define more functions
<%
#include "more_functions.py"
%>

Here, we have separated the Python code in Mako into three files: variables.py,
basic_functions.py, and more_functions.py. With the # #include state-
ments, Mako sees the .py files inserted as text inside the <% and %> directives
(check the file tmp_preprocess__mydoc.do.txt for the result of running Pre-
process and the complete DocOnce file that Mako sees).

To debug the .py files, collect all their text in one single .py file and run it.
The recommended way is to use Preprocess to copy all the text in the .py files
into a single file, named (say) all_code.p.py:

--*-- coding : utf -8 -*-
(Encoding info cannot be in mako code , but required here

101

in Python code if we use non - ascii characters)

include " variables .py"
include " basic_functions .py"
include " more_functions .py"

Test the code included above
from __future__ import print_function
print(some_func(1, ’arg’))

Note that after including the .py files, one can insert calls to functions, print
variables, etc., as desired to debug and experiment.

Run Preprocess on all_code.p.py to produce an ordinary Python file all_code.py
and run that code to test and debug. A little shell script all_code.sh doing both
these things is convenient:

#!/ bin /sh
preprocess all_code.p.py > all_code.py
python all_code.py

This setup for having the code external to the DocOnce document is very effec-
tive, especially when the Python code in Mako grows and becomes non-trivial.

Things to remember when programming Mako.

• Do not use continuation character (backslash) in Python code.

• When a Mako error refers to a line in the text, invoke the file that
Mako sees: tmp_preprocess__mydoc.do.txt if the DocOnce file
has name mydoc.do.txt.

• Use double ## (Mako comment) to comment out Mako calls of the
form ${name...}.

And to be repeated: keep the Python code in separate files!

One can use Mako to extend the DocOnce syntax. Four examples are given
next.

11.3 Example: Nomenclature functionality

LATEX has a package for nomenclatures (see documentation) that allows a user
to issue a simple command

\nomenclature{symbol }{ definition}

to add a symbol and its definition to a nomenclature. The command \printglossary
inserts the nomenclature table in the document.

We can easily create something similar in DocOnce with the aid of Mako.
Here are the basic ideas:

102

http://cs.brown.edu/about/system/managed/latex/doc/nomencl.pdf

• Collect the nomenclature definitions in a table in a file .nomenclature.do.txt.

• Introduce a command ${insert_nomenclature()} to make a fresh .nomenclature.do.txt
file and return a @@@CODE command for inserting the nomenclature table.

• Introduce a command ${nomenclature(symbol, definition)} for adding
a new line in the nomenclature table in the file.

• Introduce a command ${end_nomenclature()} to finish the nomencla-
ture table, i.e., insert the last table line.

The Mako functions are defined by

<%
Nomenclature functionality

def insert_nomenclature():
Make new file
with open(’.nomenclature.do.txt’, ’w’) as f:

f.write("""\
|---------------------------------|
| symbol | definition |
|---l---------l-------------------|
""")

Use envir=None to make plain include
return ’@@@CODE .nomenclature.do.txt envir=None’

def nomenclature(symbol, definition):
with open(’.nomenclature.do.txt’, ’a’) as f:

f.write(’| ’ + symbol + ’ | ’ + definition + ’ |\n’)
return ’’

def end_nomenclature():
with open(’.nomenclature.do.txt’, ’a’) as f:

f.write(’|---------------------------------|\n’)
return ’’

%>

The typical application in a DocOnce document is

TITLE: ...
AUTHOR: ...
DATE: today

!split
TOC: on

!split
${insert_nomenclature()}

Here comes a lot of text...

The equation becomes

!bt
\[\nabla\cdot\sigma = \varrho f,\]
!et
where σ is the stress tensor, ϱ is the density,
and f is a body force.
${nomenclature(r’$\sigma$’, ’stress tensor’)}

103

${nomenclature(r’$\varrho$’, ’density’)}
${nomenclature(r’$f$’, ’body force’)}

More text....

At the end:
${end_nomenclature()}

Make it a habit to use raw strings r"..." for the symbol in ${nomenclature(r"...",
(sometimes backslashes enter the definition too and raw strings are required).

Here is the resulting DocOnce document after mako is run (found in tmp_mako__mydoc.do.txt
if mydoc.do.txt is the file above):

TITLE: Test
AUTHOR: HPL
DATE: today

!split
TOC: on

!split
@@@CODE .nomenclature.do.txt envir=None

Here comes a lot of text...

The equation becomes

!bt
\[\nabla\cdot\sigma = \varrho f,\]
!et
where σ is the stress tensor, ϱ is the density,
and f is a body force.

The file .nomenclature.do.txt reads

|---------------------------------|
| symbol | definition |
|---l---------l-------------------|
| σ | stress tensor |
| ϱ | density |
| f | body force |
|---------------------------------|

11.4 Example: Executing Python and using SymPy Objects
in LATEX

Here is an example where we want to illustrate how to calculate a double inte-
gral. All mathematics is to be done in SymPy, and results are supposed to be
embedded in the document’s text. We can include Python code to be executed,
anywhere in the document, and a variable var in the Python code is reached by
${var}. Here, we run SymPy and use SymPy’s LATEX converter to make LATEX
code out of computed SymPy expressions:

Execute Python code
<%

104

import sympy as sm
x, y, a = sm.symbols(’x y a’)
f = a*x + sm.sin(y)
step1 = sm.Integral(f, x, y)
step2 = sm.Integral(sm.Integralf, x).doit(), y)
step3 = step2.doit()
%>

Make use of results in the above block when writing LaTeX math
!bt
\begin{align*}
${sm.latex(step1)} &= ${sm.latex(step2)}\\
&= ${sm.latex(step3)}
\end{align*}
!et

The result of the LATEX block above, after Mako is run, becomes

\begin{align*}
\iint a x + y^{2} \sin{\ left (y \right)}\, dx\, dy &=
\int \frac{a x^{2}}{2} + x y^{2} \sin{\ left (y \right)}\, dy\\
&= \frac{a y}{2} x^{2} + x \left(- y^{2} \cos{\ left (y \right)}

+
2 y \sin{\ left (y \right)} + 2 \cos{\ left (y \right)}\ right)
\end{align*}

Debugging Python code in Mako is less convenient than debugging Python
files directly, so one may prefer to just include the Python code that Mako is
supposed to run by

<%
#include "src/ex1.py"
%>

This is the recommended way to make use of SymPy to automate the math-
ematical derivations: first develop and test the SymPy code files, include the
files in the document inside Mako’s Python code environment.

Remark. Executing Python code inside the DocOnce document is closely
related to literate programming. Tools supporting creating a document while
running a Python programming cover Pweave, Python literate, PyWebTool, An-
tiweb, Literate Programming in Python, Pyreport, and also IPython notebooks.

11.5 Example: Extending Tables to Handle Figures

DocOnce tables cannot contain figures, since figures must appear on a single
line with the special syntax FIGURE: [file, ...]. What if you want a table of
thumbnail figures with hyperlinks?

Solution for LATEX and HTML. We first restrict our attention to LATEX and
HTML. In those cases we can create an ordinary table and insert a call to a
Mako function table cells to return the proper LATEX or HTML code for display-
ing a figure.

105

http://mpastell.com/pweave/
https://github.com/stdbrouw/python-literate
http://pywebtool.sourceforge.net/
http://pythonhosted.org/antiweb/index.html
http://pythonhosted.org/antiweb/index.html
http://en.literateprograms.org/Literate_Programming_(Python)
http://gael-varoquaux.info/computers/pyreport/

The Mako call syntax in a cell is decided to be ${tfig(’080’)}, which insert
the figure mov/wave_frames/frame_0080.png. A 3x3 table of figures then look
like

|---|
| | | |
|-------c---------------c----------------c--------|
|${tfig(’080’)} | ${tfig(’085’)} | ${tfig(’090’)} |
|${tfig(’095’)} | ${tfig(’100’)} | ${tfig(’105’)} |
|${tfig(’110’)} | ${tfig(’115’)} | ${tfig(’120’)} |
|---|

We do not want a heading, just a grid of figures, but a heading is required
in DocOnce figures, so the solution is to provide empty column names in the
heading. This solution gives acceptable results in HTML and LATEX.

The Mako function can be a plain Python function:
<%
def tfig(fileno):

p = ’mov/wave_frames/frame_0 ’ + fileno + ’.png’ # path
if FORMAT in ("latex", "pdflatex"):

text = r’\includegraphics[width=2cm]{%s}’ % p
elif FORMAT == "html":

text = ’’ %
(p, p)

else:
text = ’"‘%s‘": "%s"’ % (fileno , p) # plain link

return text
%>

Note that for other formats than LATEX and HTML we just return a link to the
figure.

Notice.

A corresponding solution for Sphinx will not work because inline figures in
Sphinx have a syntax with pipe symbols (’|’) that interfere with the column
separator in tables in DocOnce. Returning the HTML code in the case
of Sphinx will just display that HTML code in the cells, not the rendered
HTML code. A solution that includes Sphinx is provided later.

The resulting table is displayed below.

106

Generating the Entire Table. The specific structure of this table also suggest
using Mako to generate the entire table:
<%
def generate_table(start , end , step , no_of_columns):

Heading
text = ’’
horizontal_rule = ’|----|\n’
text += horizontal_rule
text += ’| ’*no_of_columns + ’|\n’
text += horizontal_rule
fig_counter = 0
for counter in range(start , end+1, step):

fig_counter += 1
text += ’| ’ + tfig(’%03d’ % counter) + ’ ’
if fig_counter % no_of_columns == 0:

text += ’|\n’
text += horizontal_rule
return text

%>

${generate_table(80, 120 , 5, 3)}

The result is a table like the one above, except that the horizontal rules and
the heading are very short lines (but this is legal syntax - it just does not look
appealing in the DocOnce source).

Generating the Entire Table in a Native Format via Mako. To allow Sphinx
and other formats, it is best to generate the entire table. This can be done
either by a Mako function or as a post process after DocOnce has created the
output file. We show the Mako solution here.

Tip.

107

A pure Mako Python function is easiest to develop in a separate Python
program file because Python has better error messages than Mako. Also,
Python has debugging facilities that make the development of the code
much more efficient than writing in Mako. When the Python function
works, it can be inserted in the DocOnce file inside the Mako directives
<% and %>.

The Mako function for generating the entire table in LATEX, HTML, and Sphinx
format goes as follows.
<%
def generate_native_table(start , end , step , no_of_columns):

text = ’’
Heading
if FORMAT in ("latex", "pdflatex"):

text += r"""\begin{quote}\begin{tabular}{%s}
\hline
\\

\hline
""" % (’c’*no_of_columns)

elif FORMAT in ("sphinx", "rst", "html"):
text += ’<p><table border ="1">\n<tr>’

fig_counter = 0
latex_columns = []
for counter in range(start , end+1, step):

fig_counter += 1
if FORMAT in ("latex", "pdflatex"):

latex_columns.append(r’\includegraphics[width=2cm]’\
’{mov/wave_frames/frame_%04d.png}\n’ %

counter)
elif FORMAT in ("sphinx", "rst", "html"):

text += ’<td align=" center"> ’\
’’\
’<img src="mov/wave_frames/frame_%04d.png"

width="300">’\
’ </td >\n’ % (counter , counter)

if fig_counter % no_of_columns == 0: # new row
if FORMAT in ("latex", "pdflatex"):

text += ’ ’ + ’ & ’.join(latex_columns)
if counter != end:

text += r’\\’ + ’\n’
latex_columns = []

elif FORMAT in ("sphinx", "rst", "html"):
text += ’</tr >\n’
if counter != end:

text += ’<tr >\n’ # begin new row
Footer
if FORMAT in ("latex", "pdflatex"):

text += r"""\hline
\end{tabular}\end{quote}
"""

elif FORMAT in ("sphinx", "rst", "html"):
text += ’</table >\n’

108

if FORMAT in ("sphinx", "rst"):
Wrap raw HTML code
lines = text.splitlines ()
text = ’\n.. raw:: html\n\n’
for line in lines:

text += ’ ’ + line + ’\n’
text += ’\n’

return text
%>

Example on call in DocOnce source
${generate_native_table(80 , 120 , 5, 3)}

One can easily add support for various other formats, such as pandoc, gwiki,
mwiki, etc. The output in format the current format is as above.

Generating the Entire Table in a Native Format as a Post Process. In-
stead of using Mako as shown above, we can invent our own syntax line for the
table with figures and apply a script to the DocOnce output file to replace the
special line with proper native code. We use the same generate_native_table
function as above, but this time in a Python script. In the DocOnce source we
place a line

@@@FIGTABLE 80 120 5 3

which is meant to generate a table with figures where the numbers correspond
to arguments in the generative_native_table function.

Suppose we have run

Terminal> doconce format sphinx mydoc

In the resulting mydoc.rst file we have the magic line @@@FIGTABLE Such
lines can now be processed in our Python script:

read mydoc . rst into the string filestr
pattern = r’@@@FIGTABLE (.+)’
def replacement(m):

m is a MatchObject
args = m.group(1)
Convert args to a tuple of words with right type
args = [eval(arg) for arg in args.split()]
text = generate_native_table(*args)

filestr = re.sub(pattern , filestr , replacement)
write filestr back to manual . rst

This code makes use of a function for creating the replacement string for the
re.sub command and demands a knowledge of regular expression syntax and
the workings or re.sub. A more plain Python version goes like this:

read mydoc . rst into the string filestr
lines = filestr.splitsplines ()
for i in range(len(lines)):

if lines[i].startswith(’@@@FIGTABLE ’):

109

args = lines[i][10:].strip()
Convert args to a tuple of words with right type
args = [eval(arg) for arg in args.split()]
text = generate_native_table(*args)
lines[i] = text

filestr = ’\n’.join(lines) # make one string from all separate
lines

write filestr back to manual . rst

Recommendation.

This latter way of inserting specialized native text after DocOnce has gen-
erated the output file is easier than using Mako and usually also safer.

Lesson Learned.

The above examples show different techniques for extending the DocOnce
capabilities. The ideas are not restricted to DocOnce: using Mako as a
preprocessing step or inserting “magic” lines that you can later substitute
by a script is possible in all types of ASCII-based documents, e.g., LATEX,
Sphinx, and Markdown.

11.6 Example: Defining a Theorem Environment

DocOnce supports only basic formatting elements (headings, paragraphs, lists,
etc.), while LATEX users are used to fancy environments for, e.g., theorems. A
flexible strategy is to typeset theorems using paragraph headings, which will
look acceptable in all formats; but one should add comment lines that can
be replaced by LATEX environments via doconce replace. Theorems can be
numbered using a variable in Mako. Here is an example on raw DocOnce
code:

<%
theorem_counter = 4
%>

begin theorem
label{theorem:fundamental1}
<%
theorem_counter += 1
theorem_fundamental1 = theorem_counter
%>

__Theorem ${theorem_counter}.__
Let $a=1$ and $b=2$. Then $c=3$.
end theorem

begin proof

110

__Proof.__
Since $c=a+b$, the result follows from straightforward addition.
\Diamond|END
end proof

As we see, the proof of Theorem ${theorem_counter} is a modest
achievement.

The .p.tex output file now reads

% begin theorem
label{theorem:fundamental1}

\paragraph{Theorem 5.}
Let $a=1$ and $b=2$. Then $c=3$.
% end theorem

% begin proof
\paragraph{Proof.}
Since $c=a+b$, the result follows from straightforward addition.
\Diamond
% end proof

As we see, the proof of Theorem 5 is a modest
achievement.

Note that with Mako variables we can easily create our own counters, and this
works in any format. In LATEX we can use both the generated numbers from
Mako variables or we can use the labels.

The next step is to replace the % begin ... and % end ... lines with the
proper LATEX expressions in the .p.tex file. Moreover, we need to remove the
paragraphs with Theorem. The following Bash script does the job:
file=mydoc.p.tex
thpack =’\\ usepackage{theorem}\n\\ newtheorem{theorem}{Theorem}[section]’
doconce subst ’% insert custom LaTeX commands \.\.\. ’ $thpack

$file
doconce subst ’\\ paragraph\{Theorem \d+\.\}’ ’’ $file
doconce replace ’% begin theorem ’ ’\begin{theorem}’ $file
doconce replace ’% end theorem ’ ’\end{theorem}’ $file

More heavy editing is better done in a Python script that reads the mydoc.p.tex
file and performs string substitutions and regex substitutions as needed.

The resulting mydoc.tex file now becomes

\usepackage{theorem}
\newtheorem{theorem}{Theorem}[section]

...

\begin{theorem}
\label{theorem:fundamental1}

Let $a=1$ and $b=2$. Then $c=3$.
\end{theorem}

111

% begin proof
\paragraph{Proof.}
Since $c=a+b$, the result follows from straightforward addition.
\Diamond
% end proof

As we see, the proof of Theorem 5 is a modest
achievement.

Even better, HTML output looks nice as well.
Note that DocOnce supports fancy environments for verbatim code via the

ptex2tex program with all its flexibility for choosing environments. Also doconce
ptex2tex has quite some flexibility for typesetting computer code.

11.7 Tools for Writing DocOnce Documents

• Emacs (with the modest DocOnce syntax highlighting), Vim, Gedit, etc.

• Atom editor

• TeXMaker and Kile can in theory be adapted to handle DocOnce compi-
lation and maybe even DocOnce constructs.

11.8 Debugging

Given a problem, extract a small portion of text surrounding the problematic
area and debug that small piece of text. DocOnce does a series of transforma-
tions of the text. The effect of each of these transformation steps are dumped
to a logfile, named _doconce_debugging.log, if the command line argument
to doconce format after the filename is debug. The logfile is intended for the
developers of DocOnce, but may still give some idea of what is wrong. The
section “Basic Parsing Ideas” explains how the DocOnce text is transformed
into a specific format, and you need to know these steps to make use of the
logfile.

12 From DocOnce to Other Formats

Transformation of a DocOnce document mydoc.do.txt to various other formats
is done with the script doconce format:

Terminal> doconce format formatname mydoc.do.txt

or just drop the extension:

Terminal> doconce format formatname mydoc

112

https://atom.io/
http://www.xm1math.net/texmaker/
http://kile.sourceforge.net/

12.1 Writing a Makefile

Producing HTML, Sphinx, and in particular LATEX documents from DocOnce
sources requires a few commands. Often you want to produce several different
formats. The relevant commands should then be placed in a script that acts as
a “makefile”.

We here show how to make a Bash script. Alternatively, scripts can be
coded in Python or Perl, for instance. Below is the skeleton of a typical Bash
script, called make.sh and run as bash make.sh in a Terminal application on
Mac or any of the many terminal or console applications on Linux. On Windows
you normally cannot run Bash scripts, so you should go for Python instead
(maybe as the language in Windows Script Host).

#!/ bin / bash
set -x # write out all commands prior to execution

function system {
Run operating system command and if failure , report and abort

"$@"
if [$? -ne 0]; then

echo "make.sh: unsuccessful command $@"
echo "abort!"
exit 1

fi
}

Do a hard clean (remove all files that can be regenerated)
doconce clean
Do a soft clean (keep compiled files)
doconce lightclean

Run spellcheck
system doconce spellcheck -c ispell -d .dict4spell.txt *.do.txt

name=mydoc # name of DocOnce master document

Compile to PDF
system doconce pdflatex $name --latex_code_style=pyg # + more

options
system pdflatex -shell -escape $name
system bibtex $name
system makeindex $name
pdflatex -shell -escape $name
pdflatex -shell -escape $name

Compile to HTML (two different styles)
styles="bootstrap solarized3"
for style in $styles; do
system doconce format html $name --html_style=$style \

--html_output=${name}-${style}
system doconce split_html ${name}-${style} # split at ! split

commands
done

113

Compile to Sphinx
system doconce format sphinx $name
system doconce sphinx_dir theme=alabaster $name
python automake_sphinx.py

In addition, you are strongly encouraged to make a clean script. Here is a
quick Bash version, called clean.sh:

#!/ bin /sh
doconce clean
rm -f *.html
rm -rf Trash
rm -f automake_sphinx.py

If you host your files in a Git repository, you should also have a .gitignore
file in the root directory of the repository:

*~
.*~
tmp*
temp*
.#*
\#*
DocOnce files
.*_html_file_collection
*.p.tex
.*.exerinfo
.*.quiz
.*.quiz.html
automake_sphinx.py
Trash
LaTeX files:
*.log
*.dvi
*.aux
*.blg
*.idx
*.nav
*.out
*.toc
*.snm
*.vrb

If you host your files on GitHub and use a gh-pages branch to publish your
documents, make sure you have an empty file called .nojeykyll in the root
directory or the repository and that this file is present in the gh-pages branch.
Without .nojekyll, GitHub will not display files starting with an underscore or
dot, with the result that HTML and Sphinx documents are not rendered cor-
rectly.

12.2 Generating a Makefile

The doconce makefile can be used to automatically generate such a make-
file, more precisely a Python script make.py, which carries out the commands
explained below. If our DocOnce source is in main_myproj.do.txt, we run

doconce makefile main_myproj html pdflatex sphinx

114

to produce the necessary output for generating HTML, PDFLATEX, and Sphinx.
Usually, you need to edit make.py to really fit your needs. Some examples
lines are inserted as comments to show various options that can be added to
the basic commands. A handy feature of the generated make.py script is that
it inserts checks for successful runs of the many doconce commands, and if
something goes wrong, the script aborts.

12.3 Spell checking

Despite not being a part of compiling DocOnce to some format, spell checking
is often the first task done in a make.sh or make.py file. DocOnce comes with
a convenient support for spell checking, doconce spellcheck, where all code
and mathematics are stripped from the document, as well as all inline verbatim
expressions, comments, etc. Then a spell checker program (ispell or aspell)
is run on the stripped document, and a list of misspellings is reported.

Any DocOnce document has its own set of “legal words” (approved by the
authors) in the file .dict4spell.txt. When doconce spellcheck reports new
misspellings, some are corrected and some are added to .dict4spell.txt.
The spell checker applies an American dictionary and the user’s custom dictio-
nary in .dict4spell.txt.

The workflow is simple:

1. Run doconce spellcheck -c ispell -d .dict4spell.txt *.do.txt

2. Examine misspellings.txt for misspellings and make corrections in
the source files.

3. Rerun doconce spellcheck and repeat the procedure.

4. When all words in misspellings.txt are acceptable, add these to the
current custom dictionary by cp new_dictionary.txt~ .dict4spell.txt.

Run doconce spellcheck without any arguments to get more description of
what kind of files that are produced. For example, the text in mydoc.do.txt,
stripped for math, code, and other special constructions, is available in tmp_stripped_mydoc.do.txt
and can be copied into (e.g.) Microsoft Word for grammar check.

12.4 Preprocessing

The preprocess and mako programs are used to preprocess the file. The
DocOnce program detects whether preprocess and/or mako statements are
present and runs the corresponding programs, first preprocess and then mako.

Variables to preprocess and/or mako can be added after the filename with
the syntax -DMYVAR, -DMYVAR=val or MYVAR=val.

• The form -DMYVAR defines the variable MYVAR for preprocess (like the
same syntax for the C preprocessor - MYVAR is defined, but has not spe-
cific value). When running mako, -DMYVAR means that MYVAR has the

115

(Python) value True. You can test for # #ifdef MYVAR in Preprocess
and % if MYVAR: in Mako.

• The expressions -DMYVAR=val and MYVAR=val are equivalent. When run-
ning preprocess, MYVAR is defined and has the value val (# #ifdef MYVAR
and # #if MYVAR == "val" are both true tests), while for mako, MYVAR ex-
ists as variable and has the value val (% if MYVAR == "val" is true).

Note that MYVAR=False defines MYVAR in preprocess and any test # #ifdef MYVAR
is always true, regardless of the value one has set MYVAR to, so a better test is
#if MYVAR == True. In general, it is recommended to go with preprocess di-
rectives if the tests are very simple, as in # #ifdef MYVAR or # #if FORMAT == "latex",
otherwise use only mako syntax like % if MYVAR or YOURVAR: to incorporate
if tests in the preprocessor phases.

Two examples on defining preprocessor variables are

Terminal> doconce format sphinx mydoc -Dextra_sections -DVAR1=5
Terminal> doconce format sphinx mydoc extra_sections=True VAR1=5

The variable FORMAT is always defined as the current format when running
preprocess or mako. That is, in the above examples, FORMAT is defined as
sphinx. Inside the DocOnce document one can then perform format spe-
cific actions through tests like #if FORMAT == "sphinx" (for preprocess) or
% if FORMAT == "sphinx": (for mako).

The result of running preprocess on a DocOnce file mydoc.do.txt is avail-
able in a file tmp_preprocess__mydoc.do.txt. Similarly, the result of running
mako is available in tmp_mako__mydoc.do.txt. By examining these files one
can see exactly what the preprocessors have done.

The command-line arguments --no_preprocess and --no_mako turn off
running preprocess and mako, respectively.

Variable Substition with Preprocessors. A variable VAR=value given on
the command line (or -DVar=value) can be used in Preprocess and Mako
tests. With Mako, the variable can also be used inside text, as ${VAR}, and
Mako will substitute the variable by its value. Preprocess can also substi-
tute a variable by its value, but this is (on DocOnce’s use of Preprocess) re-
stricted to filenames in #include statements. With the command-line option
--preprocess_include_subst, any -DVAR=value variable will lead to a susbtitu-
tion of VAR by value in included filenames. For example, # #include "MYDIR/myfile.do.txt"
and -DMYDIR=RN2 will lead to inclusion of the file RN2/myfile.do.txt. Note that
for this Preprocess substitution, the variable in the filename must be MYDIR, not
${MYDIR} as with Mako.

12.5 Removal of Inline Comments

Inline comments (inside square brackets) in the text are removed from the out-
put by

116

Terminal> doconce format latex mydoc --skip_inline_comments

One can also remove all such comments from the original DocOnce file by
running:

Terminal> doconce remove_inline_comments mydoc

This action is convenient when a DocOnce document reaches its final form and
comments by different authors should be removed.

12.6 Notes

DocOnce does not have a tag for longer notes, because implementation of
a "notes feature" is so easy using the preprocess or mako programs. Just
introduce some variable, say NOTES, that you define through -DNOTES (or not)
when running doconce format Inside the document you place your notes
between # #ifdef NOTES and # #endif preprocess tags. Alternatively you
use % if NOTES: and % endif that mako will recognize. In the same way you
may encapsulate unfinished material, extra material to be removed for readers
but still nice to archive as part of the document for future revisions.

12.7 Demo of Different Formats

A simple scientific report is available in a lot of different formats. How to create
the different formats is explained in more depth in the coming sections.

12.8 Tweaking the DocOnce Output

Occasionally, one would like to tweak the output in a certain format from Do-
cOnce. One example is figure filenames when transforming DocOnce to re-
StructuredText. Since DocOnce does not know if the .rst file is going to be
filtered to LATEX or HTML, it cannot know if .eps or .png is the most appropriate
image filename. The solution is to use a text substitution command or code
with, e.g., sed, perl, python, or scitools subst, to automatically edit the output
file from DocOnce. It is then wise to run DocOnce and the editing commands
from a script to automate all steps in going from DocOnce to the final format(s).
The make.sh files in docs/manual and docs/tutorial constitute comprehen-
sive examples on how such scripts can be made.

12.9 Useful Options for doconce format

The doconce format command used to translate a DocOnce document to an
output format performs some syntax check and to notify the user about com-
mon problems. There are some useful options for turning on additional checks:

117

http://doconce.github.com/teamods/writing_reports/index_with_doconce_commands.html

• –labelcheck=on (or off) to check that every ref reference has a corre-
sponding label definition within the document (this check may lead to
wrong diagnostics, e.g., when a label is defined in an external document
and referred via generalized references, so the check must be used with
care)

• –urlcheck checks that all URLs referred to in the document are valid.

Other useful options are

• --os_prompt=PROMPT> sets the prompt, here PROMPT>, as terminal prompt
in output from running OS commands with the @@@OSCMD instruction. The
value None gives no prompt.

• --code_prefix=X prefixes all @@@CODE imports with some path X (if the
source files are located in some other directory)

• --figure_prefix=X and --movie_prefix=X prefix figure/movie file names
with a path or URL

• --sections_down and --sections_up move all sections down or up (e.g.,
sections become subsections or chapters).

• –tables2csv translates each table to a CSV file.

• --short_title=X sets a short title X for the document.

• --toc_depth=X: controls the depth of the table of contents in documents.
Default value of X is 3, meaning chapters, sections, and subsections. X
as 0 gives the table of contents as a nested list in Bootstrap styles.

Many more options, depending on the output format, are listed in the following
sections. A list of all options is otbained by running doconce format –help (or
preferably doconce format –help | less since the output is extensive).

13 HTML

13.1 Basic HTML Output

Making an HTML version of a DocOnce file mydoc.do.txt is performed by

Terminal> doconce format html mydoc

The resulting file mydoc.html can be loaded into any web browser for viewing.

118

13.2 Typesetting of Code

If the Pygments package (including the pygmentize program) is installed, code
blocks are typeset with aid of this package. The command-line argument
--no_pygments_html turns off the use of Pygments and makes code blocks ap-
pear with plain (pre) HTML tags. The option --pygments_html_linenos turns
on line numbers in Pygments-formatted code blocks. A specific Pygments style
is set by --pygments_html_style=style, where style can be default, emacs,
perldoc, and other valid names for Pygments styles.

13.3 Handling of Movies

MP4, WebM, and Ogg movies are typeset with the HTML5 video tag and the
HTML code tries to load as many versions among MP4, WebM, and Ogg as
exist (and the files are loaded in the mentioned order). If just the specified
file is to be loaded, use the --no_mp4_webm_ogg_alternatives command-line
option. Other movie formats, e.g., .flv, .mpeg and .avi, are embedded via
the older embed tag.

13.4 HTML Styles

The HTML style can be defined either in the header of the HTML file, using a
named built-in style; in an external CSS file; or in a template file.

An external CSS file filename used by setting the command-line argument
–css=filename. There available built-in styles are specified as --html_style=name,
where name can be

• solarized: the famous solarized style (yellowish),

• blueish: a simple style with blue headings (default),

• blueish2: a variant of bluish,

• bloodish: as bluish, but dark read as color,

• bootstrap* or bootswatch* in a lot of variants, see doconce format
–help for a list of all styles.

There is a comprehensive demonstration of almost all available styles!
Using –css=filename where filename is a non-existing file makes DocOnce

write the built-in style to that file. Otherwise the HTML links to the CSS stylesheet
in filename. Several stylesheets can be specified: –ccs=file1.css,file2.css,file3.css.

13.5 HTML templates

Templates are HTML files with ready-made headers, footers, and style specifi-
cations where plain HTML text can be inserted in "slots" in the template file.

119

http://ethanschoonover.com/solarized
http://doconce.github.io/teamods/writing_reports/index.html

Typically, there is a slot %(main)s for the main body of text, %(title)s for
the title, and %(date)s for the date. Templates are designed beforehand and
doconce format puts the translated HTML text into the template to form the
complete HTML document.

DocOnce comes with a few ready-made HTML templates. The usage of
templates is described in a separate document. That document describes how
you your DocOnce-generated HTML file can have any specified layout.

The HTML file can be embedded in a template with your own tailored de-
sign, see a tutorial on this topic. The template file must contain valid HTML
code and can have three "slots": %(title)s for a title, %(date)s for a date, and
%(main)s for the main body of text. The latter is the DocOnce document trans-
lated to HTML. The title becomes the first heading in the DocOnce document,
or the title (but a title is not recommended when using templates). The date is
extracted from the DATE: line. With the template feature one can easily embed
the text in the look and feel of a website. DocOnce comes with two templates
in bundled/html_styles. Just copy the directory containing the template and
the CSS and JavaScript files to your document directory, edit the template as
needed (also check that paths to the css and js subdirectories are correct -
according to how you store the template files), and run

Terminal> doconce format html mydoc --html_template=mytemplate.html

The template in style_vagrant also needs an extra option --html_style=bootstrap.

13.6 Splitting HTML documents

The !split command (on separate lines) signifies a pagebreak. A command
doconce split_html is needed after doconce format to actually perform the
split. The doconce split_html command has several options for setting the
type of splitting, type of navigation buttons, etc. Just type doconce split_html
to see the options. Here is an example with separate links for each page (pagi-
nation) at the top and bottom of each page:

Terminal> doconce format html mydoc --html_style=bootswatch_journal
Terminal> doconce split_html mydoc --nav_buttontop+bottom --pagination

The HTML File Collection. There are usually a range of files needed for an
HTML document arising from a DocOnce source. The needed files are listed
in .basename_html_file_collection, where basename is the filestem of the
DocOnce file (i.e., the DocOnce source is in basename.do.txt).

Filenames. An HTML version of a DocOnce document is often made in dif-
ferent styles, calling for a need to rename the HTML output file. This is conve-
niently done by the --html_output=mydoc option, where mydoc is the filestem
of the associated HTML files. The .mydoc_html_file_collection file lists all

120

http://doconce.github.io/doconce/doc/pub/design/
http://doconce.github.io/doconce/doc/pub/tech_wrapper.htl

the needed files for the HTML document. Here is an example on making three
versions of the HTML document: mydoc_bloodish.html, mydoc_solarized,
and mydoc_vagrant.

Terminal> doconce format html mydoc --html_style=bloodish \
--html_output=mydoc_bloodish

Terminal> doconce split_html mydoc_bloodish.html
Terminal> doconce format html mydoc --html_style=solarized \

--html_output=mydoc_solarized \
--pygments_html_style=perldoc --html_admon=apricot

Terminal> doconce format html mydoc --html_style=vagrant \
--html_output=mydoc_vagrant --pygments_html_style=default \
--html_template=templates/my_adapted_vagrant_template.html

Terminal> doconce split_html mydoc_vagrant.html

13.7 URL to files hosted on GitHub

The generated HTML code will have URLs to files in the DocOnce repo at
GitHub. The type of URL is set with the --html_raw_github_url=... option:

• --html_raw_github_url=safe or --html_raw_github_url=cdn.rawgit:
safe URL for high traffic production sites (default)

• --html_raw_github_url=test or --html_raw_github_url=rawgit: rec-
ommended URL for low traffic development sites - use this when devel-
oping HTML pages and the DocOnce GitHub links in the HTML files are
also developed and subject to changes

• --html_raw_github_url=github or --html_raw_github_url=raw.github:
URL directly to the raw GitHub file (https://raw.github.com/doconce/doconce/...)
that may fail to load properly in (e.g.) Internet explorer

• --html_raw_github_url=githubusercontent or --html_raw_github_url=raw.githubusercontent:
as the one above, but using https://raw.githubusercontent.com in-
stead

13.8 Other HTML options

The Bootstrap family of styles have become very popular since they provide
responsive pages for phones and small tablets. There are several specific
options for Bootstrap styles:

• --html_code_style=on,off,inherit,transparent: control the style of
inline verbatim code code tags. With off, inherit, or transparent the
verbatim text inherits foreground and background color from its surround-
ings, while on (default) means that the typesetting is css-specified. This
option is most relevant for Bootstrap styles to avoid the redish typesetting
of inline verbatim text.

121

• --html_pre_style=on,off,inherit,transparent: control the style of
code blocks in pre tags. With off, inherit, or transparent the code
blocks inherit foreground and background color from their surroundings,
while on (default) means that code block colors are css-specified. This
option is most relevant for Bootstrap styles to avoid white background in
code blocks inside colorful admons.

• --html_bootstrap_navbar=on,off: turn the Bootstrap navigation bar on
or off.

• --html_bootstrap_jumbotron=on,off,h2: turn the jumbotron intro on
or off, and govern the size of the document title. Default is on, while
h2 means a jumbotron with h2 (section) size of the title (normally the
jumbotron has huge heading fonts so some jumbotrons look better with
h2 typesetting of the document title).

• --html_quiz_button_text=X: set a text on the answer button for Bootstrap-
style quizzes. Without this option a small icon is used.

Other options:

• --html_share=http://... makes sharing buttons at the end of the doc-
ument: email, Facebook, Google+, LinkedIn, Twitter, and print by default.
--html_share=http://...,twitter,linkedin will make just to sharing
buttons for Twitter and LinkedIn. Sites are separated by comma and valid
names are email, facebook, google+, linkedin, twitter, and print.
The URL http://... must be the URL where the document is published.

• --html_toc_indent=X: indent sections/subsections X spaces in the table
of contents.

• --html_body_font=: specify font for text body. The value ? lists available
fonts.

• --html_heading_font=: specify font for headings. The value ? lists avail-
able fonts.

• --html_video_autoplay=True,False: let videos play automatically (True,
default) or not (False) when the HTML page is loaded.

• --html_admon=X: specify typesetting of admonitions. Values of X are
colors, gray, yellow, apricot, lyx, paragraph. For Bootstrap styles
only to other values are legal: botstrap_panel or bootstrap_alert. See
demos for how these look like.

• --html_admon_bg_color=X: set the background color in admonitions.

• --html_admon_bd_color=X: set the boundary color in admonitions.

• --html_admon_shadow: add a shadow effect in admonitions.

122

• --html_box_shadow: add a shadow effect in box environments (!bbox).

• --html_exercise_icon=X: specify an icon to more easily notify exercises.
X can be any filename question_*.png in the bundled/html_images di-
rectory in the DocOnce repo. With X as default, a default icon choice is
made, based on the current style.

• --html_exercise_icon_width=X: set the width of the exercise icon im-
age to X pixels.

• --exercise_numbering=absolute, chapter

• --html_DOCTYPE: insert <!DOCTYPE HTML> at the top of the HTML output
file. This is normally recommended, but malformed CSS files will then
not be loaded (so by default, the doctype is not specified). This option is
necessary for correct rendering of Bootstrap styles in Internet Explorer.

• --html_links_in_new_window: open all links as new tabs.

• --html_figure_hrule=X: control the use of horizontal rules in figures. X
is top by default; other values are none (no rules), bottom and top+bottom.

• --allow_refs_to_external_docs (do not abort if there are references
whose labels are not found)

13.9 Blog Posts

DocOnce can be used for writing blog posts provided the blog site accepts raw
HTML code. Google’s Blogger service (blogger.com or blogname.blogspot.com)
is particularly well suited since it also allows extensive LATEX mathematics via
MathJax.

1. Write the text of the blog post as a DocOnce document without any title,
author, and date.

2. Generate HTML as described above.

3. Copy the text and paste it into the text area in the blog post (just delete
the HTML code that initially pops up in the text area). Make sure the input
format is HTML.

See a simple blog example and a scientific report for demonstrations of blog
posts at blogspot.no.

Warning.

The comment field after the blog post does not recognize MathJax (LATEX)
mathematics or code with indentation. However, using a MathJax book-

123

http://doconce.blogspot.no
http://doconce-report-demo.blogspot.no/

marklet, e.g., at http://checkmyworking.com/misc/mathjax-bookmarklet/,
one can get the mathematics properly rendered. The comment fields are
not suitable for computer code, though, as HTML tags are not allowed.

Notice.

Figure files must be uploaded to some web site and the local filenames
name must be replaced by the relevant URL. This is usually done by
using the --figure_prefix=http://project.github.io/... option to
give some URL as prefix to all figure names (a similar --movie_prefix=
option exists as well).

Changing figure names in a blog post can also be done “manually” by
some editing code in the script that compiles the DocOnce document to
HTML format:
cp mydoc.do.txt mydoc2.do.txt
url="https//raw.github.com/someuser/someuser.github.com"
dir="master/project/dir1/dir2"
for figname in fig1 fig2 fig3; do

doconce replace "[$figname ," "[$site/$dir/$figname.png ," \
mydoc2.do.txt

done
doconce format html mydoc2
Paste mydoc2 . html into a new blog post page

Blog posts at Google can also be published automatically through email. A
Python program can send the contents of the HTML file to the blog site’s email
address using the packages smtplib and email.

WordPress (wordpress.com) allows raw HTML code in blogs, but has very
limited LATEX support, basically only formulas. The –wordpress option to doconce
modifies the HTML code such that all equations are typeset in a way that is ac-
ceptable to WordPress. Look at a simple doconce example and a scientific
report to see blog posts with mathematics and code on WordPress.

Speaking of WordPress, the related project http://pressbooks.com can
take raw HTML code (from DocOnce, for instance, but use the –wordpress
option) and produce very nice-looking books. There is support for LATEX mathe-
matics as in WordPress blog posts, meaning that one cannot refer to equations.

[[[

14 Pandoc and Markdown

Output in Pandoc’s extended Markdown format results from

Terminal> doconce format pandoc mydoc

124

http://checkmyworking.com/misc/mathjax-bookmarklet/
http://support.google.com/blogger/bin/answer.py?hl=en&answer=41452
http://doconce.wordpress.com
http://doconcereportdemo.wordpress.com/
http://doconcereportdemo.wordpress.com/
http://pressbooks.com

or (equivalent)

Terminal> doconce format markdown mydoc

Test on FORMAT == ’pandoc’ for Markdown!

Note that even though it works to write doconce format markdown, the
FORMAT variable that is defined in all DocOnce documents has the value
pandoc for all the Markdown formats. A test like FORMAT == ’markdown’
will not work!

The name of the output file is mydoc.md. There are four supported dialects
of Markdown (see sections below for more information):

• Pandoc-extended Markdown

• GitHub-flavored Markdown

• MultiMarkdown

• Strict Markdown

From the Markdown format one can go to numerous other formats using the
pandoc program:

Terminal> pandoc -R -t mediawiki -o mydoc.mwk --toc mydoc.md

Pandoc supports latex, html, odt (OpenOffice), docx (Microsoft Word), rtf,
texinfo, to mention some. The -R option makes Pandoc pass raw HTML or
LATEX to the output format instead of ignoring it, while the –toc option generates
a table of contents. See the Pandoc documentation for the many features of
the pandoc program.

14.1 Markdown to HTML conversion

The HTML output from pandoc needs adjustments to provide full support for
MathJax LATEX mathematics, and for this purpose one should use doconce
md2html:

Terminal> doconce format pandoc mydoc
Terminal> doconce md2html mydoc

The result mydoc.html can be viewed in a browser.

14.2 Strict Markdown

The option --strict_markdown_output generates plain or strict Markdown
without the many extension that Pandoc accepts in Markdown syntax.

125

http://johnmacfarlane.net/pandoc/README.html

14.3 GitHub-flavored Markdown

Adding the command-line option github-md turns on the GutHub-flavored Mark-
down dialect, which is used for the issue tracker on GitHub. A special feature is
the support of task lists: unnumbered lists with [x] (task done) or [] (task not
done). (Tables get typeset directly as HTML and the syntax for code highlight-
ing is different from Pandoc extended Markdown.) Below is a typical response
in a GitHub issue tracker where one first quotes the issue and then provides an
answer:

!bquote
===== Problems with a function =====

There is a problem with the ‘f(x)‘ function

!bc pycod
def f(x):

return 1 + x
!ec
This function should be quadratic.
!equote

OK, this is fixed:

!bc pycod
def f(x, a=1, b=1, c=1):

return a*x**2 + b*x + c
!ec

===== Updated task list =====

* [x] Offer an ‘f(x)‘ function
* [] Extension to cubic functions
* [x] Allowing general coefficient in the quadratic function

=== Remaining functionality ===

|---|
| function | purpose | state |
|----l-----------l------------------------------l---------------|
| ‘g(x)‘ | Compute the Gaussian function. | Formula ready. |
| ‘h(x)‘ | Heaviside function. | Formula ready. |
| ‘I(x)‘ | Indicator function. | Nothing done yet. |
|---|

Say this text is stored in a file mycomments.do.txt. Running

Terminal> doconce format pandoc mycomments --github_md

produces the Markdown file mycomments.md, which can be pasted into the Write
field of the GitHub issue tracker. Turning on Preview shows the typesetting of
the quote, compute code, inline verbatim, headings, the task list, and the table.

126

https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
http://github.com

14.4 MultiMarkdown

The option --multimarkdown_output generates the MultiMarkdown version of
Markdown (as opposed to Pandoc-extended Markdown (default), strict Mark-
down, or GitHub-flavored Markdown).

14.5 Strapdown rendering of Markdown text

Strapdown is a tool that can render Markdown text nicely in a web browser by
just inserting an HTML header and footer in the Markdown file and load the file
into a browser. The option –strapdown outputs the relevant header and footer.
The output file must be renamed such that it gets the extension .html:

Terminal> doconce format pandoc mydoc --strict_markdown_output \
--strapdown --bootstrap_bootwatch_theme=slate

Terminal> mv mydoc.md mydoc.html

The --bootstrap_bootwatch_theme=theme option is used to choose a Bootswatch
theme whose names are found on the Strapdown page.

14.6 Using Pandoc to go from LATEX to MS Word or HTML

Pandoc is useful to go from LATEX mathematics to, e.g., HTML or MS Word.
There are two ways (experiment to find the best one for your document): doconce
format pandoc and then translating using doconce md2latex (which runs pandoc),
or doconce format latex, and then going from LATEX to the desired format us-
ing pandoc. Here is an example on the latter strategy:

Terminal> doconce format latex mydoc
Terminal> doconce ptex2tex mydoc
Terminal> doconce replace ’\Verb!’ ’\verb!’ mydoc.tex
Terminal> pandoc -f latex -t docx -o mydoc.docx mydoc.tex

When we go through pandoc, only single equations, align, or align* environ-
ments are well understood for output to HTML.

Note that DocOnce applies the Verb macro from the fancyvrb package
while pandoc only supports the standard verb construction for inline verbatim
text. Moreover, quite some additional doconce replace and doconce subst
edits might be needed on the .mkd or .tex files to successfully have mathe-
matics that is well translated to MS Word. Also when going to reStructuredText
using Pandoc, it can be advantageous to go via LATEX.

15 LATEX

Notice.

127

http://strapdownjs.com
http://bootswatch.com/
http://strapdownjs.com

XeLaTeX and PDFLATEX are used very much in the same way as standard
LATEX. The minor differences are described in separate sections of the
documentation of the DocOnce to LATEX translation.

15.1 Overview

Making a LATEX file mydoc.tex from mydoc.do.txt can be done in two ways:

1. direct translation to a .tex file

2. translation to a .p.tex file

In the latter case, one must apply the ptex2tex program or the simplified
doconce ptex2tex program to translate the .p.tex file to a plain .tex file. This
step involves the specification of how blocks of verbatim code should be type-
set in LATEX. Before 2015, DocOnce always translated to the .p.tex syntax and
required the use of ptex2tex or doconce ptex2tex. Now, one can choose a
direct translation, which is simpler and actually more versatile than even using
the ptex2tex program.

Direct translation is specified by the --latex_code_style= command-line
option. A separate document, Demonstration of DocOnce support for LATEX
code block environments, describes how this option is used and the demon-
strates many possibilities that are available. One popular choice is

default:lst[style=blue1_bluegreen]@dat:lst[style=gray]@sys:vrb

This value gives syntax-highlighted blue-green code on a blue background and
sets data files with gray background.

The --latex_code_style= option makes the use of ptex2tex or doconce
ptex2tex redundant.

15.2 The old ptex2tex step

Here, we describe the old translation via a .p.tex file. New users should jump
over this information and use the --latex_code_style= option to specify ver-
batim code environments.

First we compile the DocOnce source to the ptex2tex format, and then
we compile the ptex2tex format to standard LATEX. The ptex2tex format can
be viewed as an extended LATEX. For DocOnce users, the ptex2tex format
essentially means that the file consists of

1. if-else statements for the preprocess processor such that LATEX con-
structions can be activated or deactivated, and

2. all code environments can be typeset according to a .ptex2tex.cfg con-
figuration file.

128

http://doconce.github.io/doconce/doc/pub/latexcode/demo.html
http://doconce.github.io/doconce/doc/pub/latexcode/demo.html
http://code.google.com/p/ptex2tex

Point 2 is only of interest if you aim to use a special computer code formatting
that requires you to use a configuration file and the ptex2tex program.

The reason for generating ptex2tex and not standard LATEX directly from
DocOnce was that the ptex2tex format shows a range of possible LATEX con-
structions for controlling the layout. It can be instructive for LATEX users to look at
this code before choosing specific parts for some desired layout. Experts may
also want to edit this code (which should be automated by a script such that the
edits can be repeated when the DocOnce source is modified, see Step 2b be-
low). (Direct control of the LATEX layout in the doconce format program would
not spit out alternative LATEX constructs as is now done through the ptex2tex
step.)

Going from ptex2tex format to standard LATEX format is enabled by ei-
ther the ptex2tex program or DocOnce’s (simplified) version of it: doconce
ptex2tex.

Inline verbatim tries to use texttt and not Verb if possible.

Inline verbatim code, typeset with backticks in DocOnce, is translated to

\texttt{text}

or similar constructions with other delimiters if the pipe is used in text.
Thereafter, if text does not contain illegal characters for the \texttt com-
mand, the latter is used instead since then LATEX can insert linebreaks in
the inline verbatim text and hence avoid overfull hboxes.

15.3 LaTeX-PDF: Generate LATEX (Step 1)

The translation command. Filter the doconce text directly to valid LATEX us-
ing the --latex_code_style= option:

Terminal> doconce format pdflatex mydoc --latex_code_style=vrb

Without --latex_code_style=, the output will be a mydoc.p.tex file that has
to be converted to a standard mydoc.tex LATEX file via the programs ptex2tex
or doconce ptex2tex.

Newcommands. LaTeX-specific commands (“newcommands”) in math for-
mulas and similar can be placed in files newcommands.tex, newcommands_keep.tex,
or newcommands_replace.tex (see Section 5.3). If these files are present, they
are included in the LATEX document so that your commands are defined.

Output for paper vs screen. An option –device=paper makes some ad-
justments for documents aimed at being printed. For example, links to web

129

resources are associated with a footnote listing the complete web address
(URL). (Very long URLs in footnotes can be shortened using services such
as http://goo.gl/, http://tinyurl.com/, and https://bitly.com/.) The
default, –device=screen, creates a PDF file for reading on a screen where
links are just clickable.

Command-line options. There are many additional options (run doconce
format –help and look for options starting with –latex to get a more verbose
description):

• --latex_code_style=lst,vrb,pyg,any

• --latex_font=helvetica,palatino

• --latex_papersize=a4,a6

• --latex_bibstyle=plain (name of BIBTEX style)

• --latex_title_layout=titlepage, std, beamer, doconce_heading, Springer_collection

• --latex_style=std, Springer_sv, Springer_lncse, Springer_llncs, Springer_lnup, Springer_T2, Springer_T4, siamltex, siamltexmm, elsevier

• --latex_packages=package1,package2,package3 (list of extra packages
to be included5)

• –draft (turns on draft mode in documentclass, otherwise final mode)

• --latex_copyright=everypage,titlepages (copyright on every page
or on titlepage and chapter pages)

• --latex_list_of_exercises=loe,toc,none (LATEX list of exercises, inte-
grated into the table of contents, or no list)

• --latex_fancy_header (chapter/section headings at top of pages, style
depends on value of --latex_section_headings)

• --latex_section_headings=std,blue,bookblue,strongblue,gray,gray-wide
(standard LATEX, blue headings, blue headings for books, strong blue
headings, white in gray box, white in gray box that fills the page width)

• --latex_table_format=quote, center, footnotesize, tiny (environ-
ment around tables)

• --latex_colored_table_rows=blue, gray, no (color of every two lines
in tables)

• --latex_table_row_sep=1.5 (increase the separation between table (and
matrix) rows by a factor 1.5)

5Listing varioref in as package automatically leads to references with page numbers, if the
element referred to is not on the same page. This is often very helpful, e.g., “see Figure 5.3 on
page 67”.

130

http://goo.gl/
http://tinyurl.com/
https://bitly.com/

• --latex_todonotes (inline comments typeset as “bubbles”)

• --latex_double_spacing (to ease hand-writing between the lines)

• --latex_line_numbers (to ease references to sentences)

• --latex_labels_in_margin (name of section, equation, citation labels
in the margin)

• --latex_preamble=filename (user-specific preamble)

• --latex_admon=mdfbox, graybox2, grayicon, yellowicon, paragraph, colors1, colors2

• --latex_admon_color=0.34,0.02,0.8 (background color in admons)

• --latex_admon_envir_map=2 (code environment names in admons)

• --exercise_numbering=absolute, chapter

• --latex_movie=media9, href, multimedia, movie15 (control typeset-
ting of movies)

• --latex_movie_controls=on

• --latex_external_movie_viewer (for movie15 package)

• –xelatex (prepare for XeLaTeX)

The overall LATEX style is much governed by --latex_title_layout and --latex_style.
For the former, titlepage gives a separate title page; std is just standard LATEX
handling of title, author, and date; doconce_heading is a more modern head-
ing, Springer_collection is used with --latex_style=Springer_lncse for
an edited book; beamer is needed if the DocOnce document is to be translated
to LATEX Beamer slides. For --latex_style, std gives standard LATEX behavior;
Springer_lncse is for Springer’s LNCSE book series style (to be used with
--latex_title_layout=Springer_collection if the book is an edited book);
Springer_llncs is for Springer’s Lecture Notes in Computer Science series
(normally an edited book that also requres --latex_title_layout=Springer_collection);
Springer_lnup for Springer’s Lecture Notes for Undergraduate Physics books,
Springer_T2 for Springer’s T2 book layout, siamltex, for the LATEX style of
papers in standard SIAM journals (also used far beyond SIAM journals and re-
quires the stylefiles siamltex.cls and siam10.clo), siamltexmm for the new
multimedia SIAM journal style (requires siamltex.cls and siam10.clo), elsevier
for the style of papers to be submitted to Elsevier journals (--latex_elsevier_journal=
can be used to set the journal name, and the style requires elsarticle.cls
and elsarticle-num.bst).

131

Syntax highlighting. The style of verbatim blocks of computer code is speci-
fied by --latex_code_style=X, where X can be set in a very flexible way. There
are three main values, corresponding to three LATEX tools for verbatim type set-
ting:

• vrb for plain Verbatim style (fancyvrb LATEX package)

• pyg for the Pygments style (mintex LATEX package)

• lst for the Listings styles (listingsutf8 LATEX package)

• any for any environment named any from any package

A separate demo explains the many possible settings of X. Popular choices are
minimalistic plain verbatim,

--latex_code_style=vrb

maybe with an added light blue background color,

--latex_code_style=vrb-blue1

or the default Pygments style,

--latex_code_style=pyg

or the Listings-based style with yellow background color

--latex_code_style=lst-yellow2

It is easy to specify different styles for different code environments, say blue
background with plain verbatim style for code but a special terminal window for
the sys environment:

"--latex_code_style=default:vrb-blue1@
sys:vrb[frame=lines,label=\\fbox{{\tiny Terminal}},
framesep=2.5mm,framerule=0.7pt,fontsize=\fontsize{9pt}{9pt}]"

(but no linebreaks, as here, they are for formatting this document only).

Drafts. During development of a manuscript, may prefer line numbers, double
line spacing, frequent use of inline comments, and label names printed in the
margin. This is enabled by the options --latex_line_numbers --latex_double_spacing --latex_todonotes --latex_labels_in_margin.
One may also (automatically) edit the final argument in the documentclass
heading to draft as this will mark overful lines (hboxes).

Potential problems with ampersand. Another useful option for LATEX doc-
uments is --no_ampersand_quote, which prevents ampersands from getting
a backskash. This is necessary if one inserts native latex code for tables in-
side % if FORMAT in (’latex’, ’pdflatex’): (or similar preprocess syn-
tax) tests.

132

http://doconce.github.io/doconce/doc/pub/latexcode/demo.html

Part 2 of Step 1 (outdated). In case you did not specify the --latex_code_style=
option, you must run ptex2tex (if you have installed the Python ptex2tex pack-
age) to make a standard LATEX file,

Terminal> ptex2tex mydoc

If you do not have ptex2tex, or do not bother to make the required configura-
tion file for ptex2tex (you may of course rely on the default file), a (simplified)
version of ptex2tex that comes with DocOnce can be run:

Terminal> doconce ptex2tex mydoc

The ptex2tex command can set two preprocessor variables:

• PREAMBLE to turn the LATEX preamble on or off (i.e., complete document or
document to be included elsewhere - and note that the preamble is only
included if the document has a title, author, and date)

• MINTED for inclusion of the minted package for typesetting of code with
the Pygments tool (which requires latex or pdflatex to be run with
the -shell-escape option); not used for doconce ptex2tex only in the
ptex2tex program

If you are not satisfied with the generated DocOnce preamble, you can provide
your own preamble by adding the command-line option --latex_preamble=myfile.
In case myfile contains a documentclass definition, DocOnce assumes that
the file contains the complete preamble you want (not that all the packages
listed in the default preamble are required and must be present in myfile).
Otherwise, myfile is assumed to contain additional LATEX code to be added to
the DocOnce default preamble.

The ptex2tex tool makes it possible to easily switch between many differ-
ent fancy formattings of computer code in LATEX documents. After any !bc com-
mand in the DocOnce source you can insert verbatim block styles as defined in
your .ptex2tex.cfg file, e.g., !bc sys for a terminal session, where sys is set
to a certain environment in .ptex2tex.cfg (e.g., CodeTerminal). There are
about 40 styles to choose from, and you can easily add new ones.

The doconce ptex2tex allows specifications of code environments as well.
Here is an example:

Terminal> doconce ptex2tex mydoc \
"sys=\begin{quote}\begin{verbatim}@\end{verbatim}\end{quote}" \
fpro=minted fcod=minted shcod=Verbatim envir=ans:nt

Note that @ must be used to separate the begin and end LATEX commands, un-
less only the environment name is given (such as minted above, which implies
\begin{minted}{fortran} and \end{minted} as begin and end for blocks in-
side !bc fpro and !ec). Specifying envir=ans:nt means that all other envi-
ronments are typeset with the anslistings.sty package, e.g., !bc cppcod will
then result in \begin{c++}. A predefined shortcut as in shcod=Verbatim-0.85
results in denser vertical spacing (baselinestretch 0.85 in LATEX terminology),

133

and shcod=Verbatim-indent implies indentation of the verbatim text. Alterna-
tively, one can provide all desired parameters \begin{Verbatim} instruction
using the syntax illustrated for the sys environments above.

If no environments like sys, fpro, or the common envir are defined on the
command line, the plain \begin{Verbatim} and \end{Verbatim} instructions
are used.

15.4 LaTeX-PDF: Edit the LATEX File (Step 2, Optional)

You can edit the mydoc.tex file to your needs. For example, you may want
to substitute section by section* to avoid numbering of sections, you may
want to insert linebreaks (and perhaps space) in the title, etc. This can be
automatically edited with the aid of the doconce replace and doconce subst
commands. The former works with substituting text directly, while the latter per-
forms substitutions using regular expressions. You will use doconce replace
to edit section{ to section*{:

Terminal> doconce replace ’section{’ ’section*{’ mydoc.tex

For fixing the line break of a title, you may pick a word in the title, say "Using",
and insert a break after than word. With doconce subst this is easy employing
regular expressions with a group before "Using" and a group after:

Terminal> doconce subst ’title\{(.+)Using (.+)\}’ \
’title{\g<1> \\\\ [1.5mm] Using \g<2>’ mydoc.tex

A lot of tailored fixes to the LATEX document can be done by an appropriate set
of text replacements and regular expression substitutions. You are anyway en-
courged to make a script for generating PDF from the LATEX file so the doconce
subst or doconce replace commands can be put inside the script.

15.5 LaTeX-PDF: Generate PDF (Step 3)

Compile mydoc.tex and create the PDF file, using pdflatex:

Terminal> pdflatex mydoc
Terminal> pdflatex mydoc
Terminal> makeindex mydoc # if index
Terminal> bibtex mydoc # if bibliography
Terminal> pdflatex mydoc

One can also compile mydoc the “old way” with latex and dvipdf. Use
doconce format latex in that case and proceed with latex mydoc.

If the minted style is used, latex, pdflatex, or xelatex must be run with
the -shell-escape option:

Terminal> pdflatex -shell-escape mydoc
Terminal> pdflatex -shell-escape mydoc
Terminal> makeindex mydoc # if index
Terminal> bibtex mydoc # if bibliography
Terminal> pdflatex -shell-escape mydoc

134

15.6 XeLaTeX

XeLaTeX is an alternative to PDFLATEX and is run in almost the same way, except
for the –xelatex flag to doconce format:

Terminal> doconce format pdflatex mydoc --xelatex \
--latex_code_style=lst

Terminal> xelatex mydoc

15.7 From PDF to e-book formats

PDF (as generated from LATEX above) can be read on most devices today. How-
ever, for Kindle and other devices specialized for e-books you need to convert
to ePub or MOBI. The Calibre program can produce epub, mobi, and other e-
book formats from PDF, see a description. Unfortunately, Calibre cannot deal
satisfactory with LATEX math so the usefulness for DocOnce writers is limited.
See Section 5.2 for more information on how to generate ePub.

15.8 Microsoft Word or LibreOffice

Transforming DocOnce files to Word format is best done with the aid of pandoc.
A standard way is to first generate the Markdown format (doconce format
pandoc) and then use pandoc to generate a .docx file:

Terminal> doconce format pandoc mydoc
Terminal> pandoc -t docx -o mydoc.docx mydoc.md

The transformation works well for simple text files, but LATEX mathematics does
not work.

16 Jupyter (IPython) Notebooks

DocOnce can generate json files for the Jupyter Notebook:

Terminal> doconce format ipynb mydoc # results in mydoc.ipynb

16.1 Hidden code blocks

It is no guarantee that the notebook can be executed. For example, having the
code

print(sys.version)

will not execute unless sys is imported. While a book may show such code and
skip (potentially tedious) initializing statements, they must be present in the
notebook. To this end, use the !bc *hid environment for hidden code. In the
present example, we use !bc pyhid to specify Python code that needs to be
executed, but that should normally be hidden (other formats, with the exception
of certain interactive Sphinx documents, will hide such code).

135

http://calibre-ebook.com/
http://www.dedoimedo.com/computers/latex-lyx-e-books.html

!bc pyhid
import sys
!ec

The notebook will feature the import sys statement in a cell prior to the print(sys.version)
cell, and the latter will work.

16.2 Displaying code as plain text instead of executable cells

Some code blocks may just be there for explanation and are not meant to be
executed. These can be marked by !bc pycod-t (or !bc Xcod-t for any sup-
ported programming language X):

!bc pycod-t
if isinstance(myvar, float):

raise TypeError(’myvar must be array, not %s’ % type(myvar))
!ec

The code segment above will then be typeset as verbatim text and not an exe-
cutable cell, and there is no need to worry about a missing definition of myvar
(which would cause problems in an executable cell).

Interactive sessions with the pyshell or ipy environment will by default be
broken up into many cells such that each output command ends a cell. By exe-
cuting the cells, the input and output from the session is recovered. This is usu-
ally the behavior that is wanted, but there is an option --ipynb_split_pyshell=off
that can be used to typeset the entire session with all input but no output in one
cell (print statements will lead to output, but plain dumping of a variable will
not lead to output like it does in a Python shell).

To have an interactive session typeset with input and output in plain text,
use the -t extension to the environment: pyshell-t and ipy-t.

16.3 Figures

As with HTML files, you need to ensure that the notebook has access to figures
and source code as requested.

Figures in notebooks can be typeset in various ways, specified by the --ipynb_figure=
option, with the following values:

• imgtag: tag in HTML taking the specified width into account
(default)

• md: plain Markdown syntax for a figure, with no possibility to adjust the
size

• Image: Python notebook cell with Image object

136

16.4 Movies

Typesetting of movies is specified by --ipynb_movie=, and valid options are

• md: raw HTML code with iframe tag - not relevant for the notebook

• HTML: raw HTML code with iframe tag embedded in the HTML object from
the notebook (default)

• HTML-YouTube: as HTML but use an IPython.display.YouTubeVideo ob-
ject to display YouTube videos

• ipynb: use IPython.display.YouTubeVideo object for YouTube videos,
and use an HTML object with video tag for local movies

16.5 Admonitions

Typesetting of admonition is rather primitive in notebooks. We offer these dif-
ferent choices, set by the option --ipynb_admon=:

• quote: typeset admon as Markdown quote (special font and gray vertical
bar on the left)

• paragraph: typeset admon as a plain paragraph with a heading if any
(default)

• hrule: use a horozontal rule to surround the heading and the text

Note that quotes in !bc quote environments are always typeset as Markdown
quotes.

16.6 References to an External Textbook

Sometimes one wants to refer to equations and sections in an external LATEX
book where a book.aux file is available. The references in the notebook to the
LATEX book can then be hardcoded from the book.aux file with this construction:

Terminal> doconce format ipynb mydoc \
--replace_ref_by_latex_auxno=book.aux

16.7 Conversion from Notebook Back to DocOnce

A notebook generated from DocOnce can be converted back to DocOnce for-
mat again, even after being annotated in a web browser. Here is a trivial exam-
ple:

137

Here is a code:

!bc pypro
a = 1
b = 2
print(a + b)
!ec

We translate this DocOnce document to a notebook:
Terminal> doconce format ipynb mydoc

We load mydoc.ipynb into the notebook application and add a code cell
print("Hello , World!")

before the original code cell. After executing the cells we download the new
notebook as the file mydoc2.ipynb. We can then generate the corresponding
DocOnce document mydoc2.do.txt:
Terminal> ipynb2doconce mydoc2.ipynb

Title, author, and other information in DocOnce that does not have a corre-
sponding syntax in the notebook are stored as special comments in the gen-
erated .ipynb file so that DocOnce can retrieve this information when running
the doconce ipynb2doconce conversion command.

17 Matlab Notebooks

The Matlab publish format is aimed at notebooks, but the markup is quite prim-
itive, so only a small subset of DocOnce markup can translate successfully to
the Matlab publish format. However, if you write within that subset, it is easy
to create notebooks in DocOnce that can translate both to Python and Mat-
lab (use preprocessor directives or Mako functions to include Matlab or Python
code, depending on the output format).

The Matlab publish format is called matlabnb:
Terminal> doconce format matlabnb mydoc

The --replace_ref_by_latex_auxno= option for referring to equations and
sections in a textbook, as explained at the end of the section on Jupyter/IPython
notebooks, also works with Matlab notebooks (and for any other output format):
Terminal> doconce format matlabnb mydoc \

--replace_ref_by_latex_auxno=book.aux

18 Plain ASCII Text

We can go from DocOnce "back to" plain untagged text suitable for viewing in
terminal windows, inclusion in email text, or for insertion in computer source
code:
Terminal> doconce format plain mydoc.do.txt # results in mydoc.txt

138

19 reStructuredText

Going from DocOnce to reStructuredText gives a lot of possibilities to go to
other formats. First we filter the DocOnce text to a reStructuredText file mydoc.rst:

Terminal> doconce format rst mydoc.do.txt

We may now produce various other formats:

Terminal> rst2html.py mydoc.rst > mydoc.html # html
Terminal> rst2latex.py mydoc.rst > mydoc.tex # latex
Terminal> rst2xml.py mydoc.rst > mydoc.xml # XML
Terminal> rst2odt.py mydoc.rst > mydoc.odt # OpenOffice

The OpenOffice file mydoc.odt can be loaded into OpenOffice and saved
in, among other things, the RTF format or the Microsoft Word format. However,
it is more convenient to use the program unoconv to convert between the many
formats OpenOffice supports on the command line. Run

Terminal> unoconv --show

to see all the formats that are supported. For example, the following commands
take mydoc.odt to Microsoft Office Open XML format, classic MS Word format,
and PDF:

Terminal> unoconv -f ooxml mydoc.odt
Terminal> unoconv -f doc mydoc.odt
Terminal> unoconv -f pdf mydoc.odt

Remark about Mathematical Typesetting. At the time of this writing, there
is no easy way to go from DocOnce and LATEX mathematics to reST and further
to OpenOffice and the "MS Word world". Mathematics is only fully supported
by latex as output and to a wide extent also supported by the sphinx output
format. Some links for going from LATEX to Word are listed below.

• http://ubuntuforums.org/showthread.php?t=1033441

• http://tug.org/utilities/texconv/textopc.html

• http://nileshbansal.blogspot.com/2007/12/latex-to-openofficeword.
html

20 Sphinx

20.1 The Basic Steps

Sphinx documents demand quite some steps in their creation. We have auto-
mated most of the steps through the doconce sphinx_dir command:

Terminal> doconce sphinx_dir version=1.0 dirname=sphinxdir \
theme=sometheme mydoc short_title="short title" mydoc

139

http://ubuntuforums.org/showthread.php?t=1033441
http://tug.org/utilities/texconv/textopc.html
http://nileshbansal.blogspot.com/2007/12/latex-to-openofficeword.html
http://nileshbansal.blogspot.com/2007/12/latex-to-openofficeword.html

The author, title, and copyright information needed by Sphinx is taken from
the DocOnce file mydoc.do.txt. By default, version is 1.0 and dirname is
sphinx-rootdir. The theme keyword is used to set the theme for design of
HTML output from Sphinx (the default theme is classic).

There are more options for the sphinx_dir command: –runestone for
Runestone Interactive books, toc_depth= for setting the depth of the table of
contents, intersphinx for allowing the document to link automatically to other
Sphinx documents, conf.py= for specifying a tailored conf.py file, logo= and
favicon= for specifying logo and favicon files.

One often just runs the simple command

Terminal> doconce sphinx_dir mydoc

which creates the Sphinx directory sphinx-rootdir with relevant files.
The doconce sphinx_dir command generates a script automake_sphinx.py

for compiling the Sphinx document into an HTML document. Run

Terminal> python automake_sphinx.py

As the output also tells, you can see the Sphinx HTML version of the document
by running

Terminal> google-chrome sphinx-rootdir/_build/html/index.html

or loading the index.html file manually into your favorite web browser.
If you cycle through editing the DocOnce file and watching the HTML out-

put, you should observe that automake_sphinx.py does not recompile the Do-
cOnce file if the Sphinx .rst version already exists. In each edit-and-watch
cycle do

Terminal> rm mydoc.rst; python automake_sphinx.py

Tip.

If you are new to Sphinx and end up producing quite some Sphinx docu-
ments, you are encouraged to read the Sphinx documentation and study
the automake_sphinx.py file. Maybe you want to do things differently.

The following paragraphs describes the many possibilities for steering the
Sphinx output.

20.2 Links

The automake_sphinx.py script copies directories named fig* over to the
Sphinx directory so that figures are accessible in the Sphinx compilation. It
also examines MOVIE: and FIGURE: commands in the DocOnce file to find other
image files and copies these too. I strongly recommend to put files to which

140

there are local links (not http: or file: URLs) in a directory named _static.
The automake_sphinx.py copies _static* to the Sphinx directory, which guar-
antees that the links to the local files will work in the Sphinx document.

There is a utility doconce sphinxfix_localURLs for checking links to local
files and moving the files to _static and changing the links accordingly. For
example, a link to dir1/dir2/myfile.txt is changed to _static/myfile.txt
and myfile.txt is copied to _static. However, I recommend instead that you
manually copy files to _static when you want to link to them, or let your script
which compiles the DocOnce document do it automatically.

One can get all links to open in a new window by adding the option --html_links_in_new_window
to the doconce format command.

20.3 Themes

DocOnce comes with a rich collection of HTML themes for Sphinx documents,
much larger than what is found in the standard Sphinx distribution. Additional
themes include agni, alabaster, basic, basicstrap, bootstrap, cloud, epub,
fenics, fenics_minimal, flask, haiku, jal, pylons, pyramid, redcloud, scipy_lectures,
scrolls, slim-agogo, sphinx_rtd_theme, and vlinux-theme. Some of the
themes come with basic Sphinx, while others must be installed separately, see
the bundled/README_sphinx_themes.do.txt file in the DocOnce source code
tree for installation instructions.

The doconce sphinx_dir insert lots of extra code in the conf.py file to en-
able easy specification of information and, in particular,customization of themes.
For example, modules are loaded for the additional themes that come with Do-
cOnce, code is inserted to allow customization of the look and feel of themes,
etc.

Using a Your Own Configuration File. The conf.py file is a good start-
ing point for fine-tuning your favorite theme, and your own myconf.py file can
later be supplied and used when running doconce sphinx_dir: simply add
the command-line option conf.py=myconf.py. If you leave the project and
copyright variables as empty strings in your own myconf.py file, DocOnce will
automatically edit a copy (conf.py) of myconf.py in the sphinx root directory so
that project becomes the title of the DocOnce source file, and copyright is
based on the author or copyright information in the source file. Other variables
in myconf.py depending on title, author, and copyright information will also be
edited. In this way, you can have your tailored conf.py file, and be sure that it is
always compatible with title, author, and copyright information in the underlying
DocOnce source.

If a short title is desired, use the short_title= option as part of the doconce sphinx_dir
command. This will propagate the short title to your tailored conf.py file regard-
less of what the short title in that file is.

It is recommended to leave the variables latex_documents, man_pages, and
texinfo_documents as empty lists: [] in a tailored conf.py file.

141

Tip: Error messages from conf.py.

When you have edited a conf.py file and supplied it as part of a doconce sphinx_dir
command through the conf.py=myconf.py option, it is a danger that python automake_sphinx.py
will abort with an error message because of a problem with your config-
uration file. Note that the error message refers to a line in the conf.py
in the Sphinx root directory (sphinx-rootdir by default) and not the con-
figuration file myconf.py you created yourself (so make sure you search
in sphinx-rootdir/conf.py for the error). If the error comes from some
wrong manual editing, make sure you correct the error in myconf.py.

Compiling Multiple Themes. A script make-themes.sh can make HTML doc-
uments with one or more themes. For example, to realize the themes fenics,
pyramid, and pylon one writes

Terminal> ./make-themes.sh fenics pyramid pylon

The resulting directories with HTML documents are _build/html_fenics and
_build/html_pyramid, respectively. Without arguments, make-themes.sh makes
all available themes (!). With make-themes.sh it is easy to check out various
themes to find the one that is most attractive for your document.

You may supply your own theme and avoid copying all the themes that come
with DocOnce into the Sphinx directory. Just specify theme_dir=path on the
command line, where path is the relative path to the directory containing the
Sphinx theme. You must also specify a configure file by conf.py=path, where
path is the relative path to your conf.py file.

Example. Say you like the scipy_lectures theme, but you want a table of
contents to appear to the right, much in the same style as in the default or
classic themes (where the table of contents is to the left). You can then run
doconce sphinx_dir, invoke a text editor with the conf.py file, find the line
html_theme == ’scipy_lectures’, edit the following nosidebar to false and
rightsidebar to true. Alternatively, you may write a little script using doconce
replace to replace a portion of text in conf.py by a new one:
doconce replace "elif html_theme == ’scipy_lectures ’:

html_theme_options = {
’nosidebar ’: ’true ’,
’rightsidebar ’: ’false ’,
’sidebarbgcolor ’: ’#f2f2f2 ’,
’sidebartextcolor ’: ’#20435c ’,
’sidebarlinkcolor ’: ’#20435c ’,
’footerbgcolor ’: ’#000000 ’,
’relbarbgcolor ’: ’#000000 ’,

}" "elif html_theme == ’scipy_lectures ’:
html_theme_options = {

’nosidebar ’: ’false ’,

142

’rightsidebar ’: ’true ’,
’sidebarbgcolor ’: ’#f2f2f2 ’,
’sidebartextcolor ’: ’#20435c ’,
’sidebarlinkcolor ’: ’#20435c ’,
’footerbgcolor ’: ’#000000 ’,
’relbarbgcolor ’: ’#000000 ’,

}" conf.py

Obviously, we could also have changed colors in the edit above. The final
alternative is to save the edited conf.py file somewhere and reuse it the next
time doconce sphinx_dir is run

doconce sphinx_dir theme=scipy_lectures \
conf.py=../some/path/conf.py mydoc

20.4 RunestoneInteractive books

The doconce format sphinx command accepts an option –runestone for gen-
erating RunestoneInteractive books (which build on Sphinx). You must run
the generated automake_sphinx.py also with a –runestone option to generate
these type of documents.

20.5 The manual Sphinx procedure

If it is not desirable to use the autogenerated scripts explained above, here is
the complete manual procedure of generating a Sphinx document from a file
mydoc.do.txt.

Step 1. Translate DocOnce into the Sphinx format:

Terminal> doconce format sphinx mydoc

Step 2. Create a Sphinx root directory either manually or by using the interac-
tive sphinx-quickstart program. Here is a scripted version of the steps with
the latter:

mkdir sphinx-rootdir
sphinx-quickstart <<EOF
sphinx-rootdir
n
_
Name of My Sphinx Document
Author
version
version
.rst
index
n
y
n
n
n
n

143

http://runestoneinteractive.org

y
n
n
y
y
y
EOF

The autogenerated conf.py file may need some edits if you want to specific
layout (Sphinx themes) of HTML pages. The doconce sphinx_dir generator
makes an extended conv.py file where, among other things, several useful
Sphinx extensions are included.

Step 3. Copy the mydoc.rst file to the Sphinx root directory:

Terminal> cp mydoc.rst sphinx-rootdir

If you have figures in your document, the relative paths to those will be invalid
when you work with mydoc.rst in the sphinx-rootdir directory. Either edit
mydoc.rst so that figure file paths are correct, or simply copy your figure direc-
tories to sphinx-rootdir. Links to local files in mydoc.rst must be modified to
links to files in the _static directory, see comment above.

Step 4. Edit the generated index.rst file so that mydoc.rst is included, i.e.,
add mydoc to the toctree section so that it becomes

.. toctree::
:maxdepth: 2

mydoc

(The spaces before mydoc are important!)

Step 5. Generate, for instance, an HTML version of the Sphinx source:

make clean # remove old versions
make html

Sphinx can generate a range of different formats: standalone HTML, HTML
in separate directories with index.html files, a large single HTML file, JSON
files, various help files (the qthelp, HTML, and Devhelp projects), epub, LATEX,
PDF (via LATEX), pure text, man pages, and Texinfo files.

Step 6. View the result:

Terminal> firefox _build/html/index.html

Note that verbatim code blocks can be typeset in a variety of ways depend-
ing the argument that follows !bc: cod gives Python (code-block:: python
in Sphinx syntax) and cppcod gives C++, but all such arguments can be cus-
tomized both for Sphinx and LATEX output.

144

21 Wiki Formats

There are many different wiki formats, but DocOnce only supports three: Google-
code wiki, MediaWiki, and Creole Wiki. These formats are called gwiki, mwiki,
and cwiki, respectively. Transformation from DocOnce to these formats is
done by
Terminal> doconce format gwiki mydoc.do.txt
Terminal> doconce format mwiki mydoc.do.txt
Terminal> doconce format cwiki mydoc.do.txt

The produced MediaWiki can be tested in the sandbox of wikibooks.org.
The format works well with Wikipedia, Wikibooks, and ShoutWiki, but not al-
ways well elsewhere (see this example).

Large MediaWiki documents can be made with the Book creator. From the
MediaWiki format one can go to other formats with aid of mwlib. This means
that one can easily use DocOnce to write Wikibooks and publish these in PDF
and MediaWiki format, while at the same time, the book can also be published
as a standard LATEX book, a Sphinx web document, or a collection of HTML
files.

The Googlecode wiki document, mydoc.gwiki, is most conveniently stored
in a directory which is a clone of the wiki part of the Googlecode project. This
is far easier than copying and pasting the entire text into the wiki editor in a
web browser. Note that Google decided to close down its Googlecode service
in 2015.

When the DocOnce file contains figures, each figure filename must in the
.gwiki file be replaced by a URL where the figure is available. There are
instructions in the file for doing this. Usually, one performs this substitution
automatically (see next section).

22 Google Docs

Google Docs are normally made online in the interactive editor. However, you
may upload a DocOnce document to Google Docs. This requires transforming
the DocOnce document to one of the accepted formats for Google Docs:

• OpenOffice: doconce format rst and then run rst2odt (or rst2odt.py).
Upload the .odt file, click Open... in Google Drive and choose Google
Docs as viewer.

• MS Word: doconce format pandoc and then run pandoc to produce a
.docx file that can be uploaded to Google Drive and opened in Google
Docs.

• RTF: doconce format pandoc and then run pandoc to produce a .rtf
file that can be uploaded to Google Drive and opened. Another possi-
bility is to run doconce format latex and then latex2rtf (the support of
mathematics has gotten worse).

145

http://code.google.com/p/support/wiki/WikiSyntax
http://code.google.com/p/support/wiki/WikiSyntax
http://www.mediawiki.org/wiki/Help:Formatting
http://www.wikicreole.org/wiki/Creole1.0
http://en.wikibooks.org/wiki/Sandbox
http://doconcedemo.shoutwiki.com/wiki/DocOnce_demo_page
http://doconcedemo.jumpwiki.com/wiki/First_demo
http://en.wikipedia.org/w/index.php?title=Special:Book&bookcmd=book_creator
http://pediapress.com/code/
http://en.wikibooks.org
http://sourceforge.net/projects/latex2rtf

• Plain text: doconce format plain. Upload the .txt file to Google Drive
and open in Google Docs.

• HTML: doconce format html. Upload the .html file and open in Google
Docs. Complicated HTML files can be misinterpreted by Google Docs.

This is not yet much tested. It remains to see how code becomes in Google
Docs. Support for mathematics is probably impossible until Google Docs can
import LATEX files, but LATEX mathematics can be embedded in Google Docs and
the googledoc2latex script can convert a Google document to LATEX.

23 Options for the doconce commands

23.1 doconce format command-line options

The transformation of a DocOnce source to various format is done with the
doconce format command, which has a lot of command-line options. These
are printed out by doconce format –help. The output is listed here for conve-
nience.

Terminal> doconce format --help

doconce format X doconcefile

where X can be any of the formats: html, latex, pdflatex, rst, sphinx, plain, gwiki, mwiki, cwiki, pandoc, epytext.

--help Print all command-line options for doconce
--<cmd-option> --help Print a specific command-line option <cmd-option> for doconce
--debug Write a debugging file _doconce_debugging.log with lots of intermediate results
--no_abort Do not abort the execution if syntax errors are found.
--verbose=... Write progress of intermediate steps if they take longer than X seconds. 0: X=15 (default); 1: X=5; 2: X=0
--language=... Native language to be used: English (default), Norwegian, German, Basque, Arabic
--preprocess_include_subst Turns on variable substitutions in # #include paths when running Preprocess: preprocess -i -DMYDIR=rn1 will lead to the string "MYDIR" being replaced by the value "rn1" in # #include "..." statements.
--syntax_check=... Values: on/off. Turns on/off fix of illegal constructions and the syntax check (may be time consuming for large books).
--skip_inline_comments Remove all inline comments of the form [ID: comment].
--draft Indicates draft (turns on draft elements in LaTeX, otherwise no effect).
--CC_license=... Template wording for Creative Commons licenses. Default: "Released under CC %s 4.0 license." Example: "This work is released under the Creative Commons %s 4.0 license". CC license is specified as a part of the copyright syntax, e.g.: "AUTHOR: Kaare Dump {copyright|CC BY} at BSU & Some Company Ltd"; or: "AUTHOR: Kaare Dump at BSU & Some Company Ltd. {copyright,2005-present|CC BY-NC}". The --CC_license= option has no effect if the license does not start with CC, e.g.: "AUTHOR: Kaare Dump at BSU {copyright|Released under the MIT license.}"
--align2equations Rewrite align/alignat math environments to separate equation environments. Sometimes needed for proper MathJax rendering (e.g., remark slides). Sphinx requires such rewrite and will do it regardless of this option.
--force_tikz_conversion Force generation SVG/HTML versions of tikz figures, overwriting any previously generated SVG/HTML files (applies to all formats except LaTeX)
--tikz_libs=... TikZ libraries used in figures.
--pgfplots_libs=... pgfplots libraries used in figures.
--IBPLOT automagic translation of IBPLOT commands.
--exercise_numbering=... absolute: exercises numbered as 1, 2, ... (default); chapter: exercises numbered as 1.1, 1.2, ... , 3.1, 3.2, ..., B.1, B.2, etc. with a chapter or appendix prefix.
--exercises_in_zip Place each exercises as an individual DocOnce file in a zip archive.
--exercises_in_zip_filename=... Filenames of individual exercises in zip archive. logical: use the (first) logical filename specified by file=... ; number: use either absolute exercise number or chapter.localnumber.
--toc_depth=... No of levels in the table of contents. Default: 2, which means chapters, sections, and subsections. Set to 1 to exclude subsections. Applies to all formats, except sphinx: for sphinx, set toc_depth=... as part of the command doconce sphinx_dir.
--encoding=... Specify encoding (e.g., latin1 or utf-8).
--no_ampersand_quote Turn off special treatment of ampersand (&). Needed, e.g., when native latex code for tables are inserted in the document.
--no_mako Do not run the Mako preprocessor program.
--no_preprocess Do not run the Preprocess preprocessor program.
--mako_strict_undefined Make Mako report on undefined variables.
--no_header_footer Do not include header and footer in (LaTeX and HTML) documents.
--no_emoji Remove all emojis.
--siunits Allow siunitx MathJax/LaTeX package for support of SI units in various formats
--allow_refs_to_external_docs Do not abort translation if ref{...} to labels not defined in this document.
--userdef_environment_file=... Read user-defined environments from this file instead of the default (userdef_environments.py)

146

http://code.google.com/p/googledoc2latex

--runestone Make a RunestoneInteractive version of a Sphinx document.
--max_bc_linelength=... Strip lines in !bc environments that are longer than specified (to prevent too long lines). Default: None (no length restriction).
--replace_ref_by_latex_auxno=... Replace all ref{...} by hardcoded numbers from a latex .aux file. Makes it possible for a notebook or html page to refer to a latex textbook. Recommended syntax: see (ref{my:eq1}) in cite{MyBook}, or see Section ref{my:sec2} in cite{MyBook}.
--keep_pygments_html_bg Do not allow change of background in code blocks in HTML.
--minted_latex_style=... Specify the minted style to be used for typesetting code in LaTeX. See pygmetize -L styles for legal names.
--pygments_html_style=... Specify the minted/pygments style to be used for typesetting code in HTML. Default: default (other values: monokai, manni, rrt, perldoc, borland, colorful, murphy, trac, tango, fruity, autumn, emacs, vim, pastie, friendly, native, see pygmentize -L styles). none, no, off: turn off pygments to typeset computer code in HTML, use plain <pre> tags. highlight.js: use highlight.js syntax highlighting, not pygments.
--pygments_html_linenos Turn on line numbers in pygmentized computer code in HTML. (In LaTeX line numbers can be added via doconce subst or doconce replace such that the verbatim environments get the linenos=true parameter.)
--xhtml Use BeautifulSoap to try to produce XHTML output. It inserts end tags (e.g. </p>) and guesses where to do it.
--html_output=... Alternative basename of files associated with the HTML format.
--html_style=... Name of theme for HTML style: plain, blueish, blueish2, bloodish, tactile-black, tactile-red, rossant solarized, solarized2_light, solarized2_dark, bootstrap, bootswatch, bootstrap_X (with X=bloodish, blue, bluegray, brown, cbc, FlatUI, red), bootswatch_X (with X=cerulean, cosmo, flatly, journal, lumen, readable, simplex, spacelab, united, yeti (dark:) amelia, cyborg, darkly, slate, spruce, superhero (demos at bootswatch.com))
--html_template=... Specify an HTML template with header/footer in which the doconce document is embedded. (Often preferred to run with --no_title)
--no_title Comment out TITLE, AUTHOR, DATE. Often used with HTML templates.
--html_code_style=... off, inherit, or transparent: enable normal inline verbatim font where foreground and background color is inherited from the surroundnings. off, inherit and transparent are just synonyms for inheriting color from the text and make the background color transparent (use e.g. --html_code_style=inherit to avoid the red Boostrap color). Default: on (use the css-specified typesetting of <pre> tags). NOTE: the naming "html_code_style" is not optimal: it has nothing to do with code block style, but the <code> tag for inline verbatim text in the context of bootstrap css styles.
--html_pre_style=... off, inherit, or transparent: let code blocks inside <pre> tags have foreground and background color inherited from the surroundnings. Default: on (use the css-specified typesetting of <pre> tags). This option is most relevant for Bootstrap styles to avoid white background in code blocks inside colorful admons.
--html_toc_indent=... No of spaces for indentation of subsections in the table of contents in HTML output. Default: 3 (0 gives toc as nested list in Bootstrap-based styles).
--html_body_style=... Override elements in the <body> style css. Used to enlargen bootswatch fonts, for instance: "--html_body_style=font-size:20px;line-height:1.5"
--html_body_font=... Specify HTML font for text body. =? lists available fonts.
--html_heading_font=... Specify HTML font for headings. =? lists available fonts.
--html_video_autoplay=... True for autoplay when HTML is loaded, otherwise False (default).
--html_admon=... Type of admonition and color: colors, gray, yellow, apricot, lyx, paragraph. For html_style=bootstrap*,bootswatch*, the two legal values are boostrap_panel, bootstrap_alert.
--html_admon_shadow Add a shadow effect to HTML admon boxes (gray, yellow, apricot).
--html_admon_bg_color=... Background color of admon in HTML.
--html_admon_bd_color=... Boundary color of admon in HTML.
--css=... Specify a .css style file for HTML output. If the file does not exist, the default or specified style (--html_style=) is written to it.
--html_box_shadow Add a shadow effect in HTML box environments.
--html_share=... Specify URL and there will be Facebook, Twitter, etc. buttons at the end of the HTML document. --html_share=https://mysite.com/specials shares on email, Facebook, Google+, LinkedIn, Twitter, and enables a print button too. --html_share=https://mysite.com/specials,twitter,facebook shares on Twitter and Facebook only. Sites are separated by comma. The following names are allowed: email, facebook, google+, linkedin, twitter, print.
--html_exercise_icon=... Specify a question icon (as a filename in the bundled/html_images directory in the doconce repo) for being inserted to the right in exercises. default: turn on predefined question icons according to the chosen style. none: no icons (this is the default value).
--html_exercise_icon_width=... Width of the icon image in pixels (must be used with --html_exercise_icon).
--html_raw_github_url=... URLs to files hosted on the doconce github account. Internet Explorer (and perhaps other browsers) will not show raw.github.com files. Instead on should use rawgit.com. For development of HTML sites in Safari and Chrome and can use rawgit.com.

Values of --html_raw_github_url=: safe or cdn.rawgit: use this for ready-made sites with potentially some traffic. The URL becomes https://cdn.rawgit.com/doconce/doconce/...
test or rawgit: use this for test purposes and development with low traffic. The URL becomes https://rawgit.com/doconce/doconce/...
github or raw.github: the URL becomes https://raw.github.com and may fail to load properly.
githubusercontent or raw.githubusercontent: The URL becomes https://raw.githubusercontent.com and may fail to load properly.

--html_DOCTYPE Insert <!DOCTYPE HTML> in the top of the HTML file. This is required for Internet Explorer and Mozilla. However, some of the CSS files used by DocOnce may not load properly if they are not well formed. That is why no doctype is default in the generated HTML files.
--html_links_in_new_window Open HTML links in a new window/tab.
--html_quiz_button_text=... Text on buttons for collapsing/expanding answers and explanations in quizzes (with bootstrap styles). Default: Empty (just pencil glyphion).
--html_bootstrap_navbar=... Turns the Bootstrap navigation bar on/off. Default: on.
--html_bootstrap_jumbotron=... Turns the Bootstrap jumbotron intro on/off and governs the size of the document title. Default: on. Other values: h2, off (h2 gives h2 heading instead of h1, off gives no jumbotron).
--html_bootstrap_navbar_links=... Allows custom links in the navigation bar. Format: link|url;link|url;link|url . Example: "--html_bootstrap_navbar_links=Google|https://google.com;hpl|https://folk.uio.no/hpl"
--html_figure_caption=... Placement of figure caption: top (default) or bottom. (sidecap=True is another option, this can be set for individual figures, while --html_figure_caption controls the general caption placement of all figures.
--html_figure_hrule=... Set horizontal rule(s) above and/or below a figure. top: rule at top (default); none, off: no rules; bottom: rule at bottom; top+bottom: rule at top and bottom
--html_copyright=... Controls where to put copyright statements. everypage: in the footer of every page; titlepages or titlepage: in the footer of the titlepage only (default).
--cite_doconce Adds a citation to the DocOnce web page if copyright statements are present.
--device=... Set device to paper, screen, or other (paper impacts LaTeX output).
--number_all_equations Switch latex environments such that all equations get a number.
--denumber_all_equations Switch latex environments such no equations get a number (useful for removing equation labels in slides). Error messages are issued about references to numbered equations in the text.
--latex_style=... LaTeX style package used for the document.

std: standard LaTeX article or book style,
Springer_sv: Springer’s svmono class (the new standard for all Springer books),
Springer_T2: Springer’s T2 book style,
Springer_T4: Springer’s T4 book style (smaller pagesize than T2),
Springer_lncse: Springer’s Lecture Notes in Computational Science and Engineering (LNCSE) style,
Springer_llncs: Springer’s Lecture Notes in Computer Science style,
Springer_lnup: Springer’s Lecture Notes in University Physics,
Springer_collection: Springer’s style for chapters in LNCSE proceedings,
tufte-book: use of tufte-book.cls for E. Tufte-inspired layout,
Koma_Script: Koma Script style,
siamltex: SIAM’s standard LaTeX style for papers,
siamltexmm: SIAM’s extended (blue) multimedia style for papers.
elsevier: Elsevier Style

--latex_font=... LaTeX font choice: helvetica, palatino, utopia, std (Computer Modern, default).
--latex_code_style=...

Typesetting of code blocks.
pyg: use pygments (minted), style is set with --minted_latex_style=

147

lst: use lstlistings
vrb: use Verbatim (default)

Specifications across languages:
pyg-blue1
lst, lst-yellowgray[style=redblue]
vrb[frame=lines,framesep=2.5mm,framerule=0.7pt]

Detailed specification for each language:
default:vrb-red1[frame=lines]@pycod:lst[style=redblue]@pypro:lst-blue1[style=default]@sys:vrb[frame=lines,label=\fbox{{\tiny Terminal}},framesep=2.5mm,framerule=0.7pt]

Here, Verbatim[frame=lines] is used for all code environments, except pycod, pypro and sys, which have their own specifications.
pycod: lst package with redblue style (and white background)
pypro: lst package with default style and blue1 background
style, sys: Verbatim with the specified arguments and white background.

(Note: @ is delimiter for the language specifications, syntax is envir:package-background[style parameters]@)
--latex_code_leftmargin=... Sets the left margin in code blocks. Default: 7 (mm).
--latex_code_bg=... Background color code blocks. Default: white.
--latex_code_bg_vpad Vertical padding of background. Has only effect for vrb/pyg-bgcolor styles (not lst!).
--latex_code_lststyles=... Filename with LaTeX definitions of lst styles.
--latex_copyright=... Controls where to put copyright statements. everypage: in the footer of every page; titlepages: in the footer of the titlepage and chapter pages (for books) only (default).
--latex_bibstyle=... LaTeX bibliography style. Default: plain.
--section_numbering=... Turn section numbering on/off. Default: off for all formats except latex and pdflatex (on for those).
--latex_table_format=... Default: quote. Other values: left, center, footnotesize, tiny.
--latex_table_row_sep=... Row separation factor in tables (command \renewcommand{\arraystretch}{<factor>}. Default: 1.0
--latex_title_layout=... Layout of the title, authors, and date: std: traditional LaTeX layout; titlepage: separate page; doconce_heading (default): authors with "footnotes" for institutions; beamer: layout for beamer slides.
--latex_link_color=... Color used in hyperlinks. Default is dark blue if --device=screen, or black if --device=paper (invisible in printout or special blue color if --latex_section_headings=blue or strongblue). Values are specified either as comma-separated rgb tuples or as color names, e.g., --latex_link_color=0.1,0.9,0.85 or --latex_link_color=red or --latex_link_color=gray!70
--latex_title_reference=... latex code placed in a footnote for the title, typically used for acknowledging publisher/source of original version of the document.
--latex_encoding=... Encoding for \usepackage[encoding]{inputenc}. Values: utf8 (default) or latin1.
--latex_packages=... Comma-separated list of latex packages to be included in \usepackage commands..
--latex_papersize=... Geometry of page size: a6, a4, std (default).
--latex_list_of_exercises=... LaTeX typesetting of list of exercises: loe: special, separate list of exercises; toc: exercises included as part of the table of contents; none (default): no list of exercises.
--latex_movie=... Specify package for handling movie/video content. Default: href (hyperlink to movie file). Other options: media9, movie15, multimedia (Beamer’s \movie command).
--latex_movie_controls=... Specify control panel for movies. Default: on. Other options: off.
--latex_external_movie_viewer Allow external movie viewer for movie15 package.
--latex_fancy_header Typesetting of headers on each page: If article: section name to the left and page number to the right on even page numbers, the other way around on odd page numners. If book: section name to the left and page numner to the right on even page numbers, chapter name to the right and page number to the left on odd page numbers.
--latex_section_headings=... Typesetting of title/section/subsection headings: std (default): standard LaTeX; blue: gray blue color; strongblue: stronger blue color; gray: white text on gray background, fit to heading width; gray-wide: white text on gray background, wide as the textwidth.
--latex_colored_table_rows=... Colors on every two line in tables: no (default), gray, blue.
--latex_line_numbers Include line numbers for the running text (only active if there are inline comments.
--latex_todonotes Use the todonotes package to typeset inline comments. Gives colored bubbles in the margin for small inline comments and in the text for larger comments.
--latex_double_spacing Sets the LaTeX linespacing to 1.5 (only active if there are inline comments).
--latex_labels_in_margin Print equation, section and other LaTeX labels in the margin.
--latex_index_in_margin Place entries in the index also in the margin.
--latex_preamble=... User-provided LaTeX preamble file, either complete or additions to the doconce-generated preamble.
--latex_no_program_footnotelink If --device=paper, this option removes footnotes with links to computer programs.
--latex_admon=... Type of admonition in LaTeX:

colors1: (inspired by the NumPy User Guide) applies different colors for the different admons with an embedded icon;
colors2: like ‘colors1‘ but the text is wrapped around the icon;
mdfbox: rounded boxes with a optional title and no icon (default);
graybox2: box with square corners, gray background, and narrower than mdfbox, if code it reduces to something like mdfbox (mdframed based); the summary admon is in case of A4 format only half of the text width with text wrapped around (effective for proposals and articles);
grayicon: box with gray icons and a default light gray background;
yellowicon: box yellow icons and a default light yellow background;
paragraph: plain paragraph with boldface heading.
Note: the colors in mdfbox and other boxes can customized.

--latex_admon_color=... The color to be used as background in admonitions. A single value applies to all admons: either rgb tuple (--latex_admon_color=0.1,0.1,0.4) or saturated color (’--latex_admon_color=yellow!5’ - note the quotes needed for bash).
Multiple values can be assigned, one for each admon (all admons must be specified): ’--latex_admon_color=warning:darkgreen!40!white;notice:darkgray!20!white;summary:tucorange!20!white;question:red!50!white;block:darkgreen!40!white’ If --latex_admon=mdfbox, the specification above with color1!X!color2 will automatically trigger 2*X as the background color of the frametitle.
There are predefined multiple values, e.g., --latex_admon_color=colors1 gives red warnings, blue notice, orange questions, green summaries and yellow blocks, automatically adjusted with darker frametitles.
If --latex_admon=mdfbox, the background of the title and the color of the border of box can also be customized by direct editing. For example, a dark blue border and light blue title background is obtained by editing the .tex file as
doconce replace ’linecolor=black,’ ’linecolor=darkblue,’ mydoc.tex
doconce subst ’frametitlebackgroundcolor=.*?,’ ’frametitlebackgroundcolor=blue!5,’ mydoc.tex
Actually, this particular (and common) edit is automatically done by the option --latex_admon_color=bluestyle
--latex_admon_color=yellowstyle (the latter has color yellow!5 instead and yellow!20 for the border)

--latex_admon_title_no_period By default, a period is added to title admons that do not have a period, question mark, or similar. This option prevents adding a period such that the title acts like a heading.
--latex_admon_envir_map=... Mapping of code envirs to new envir names inside admons, e.g., to get a different code typesetting inside admons. This is useful if admons have a special color and the color background of code blocks does not fit will with the color background inside admons. Then it is natural to use a different verbatim code style inside admons. If specifying a number, say 2, as in --latex_admon_envir_map=2, an envir like pycod gets the number appended: pycod2. One can then in --latex_code_style= or in doconce ptex2tex or ptex2tex specify the typesetting of pycod2 environments. Otherwise the specification must be a mapping for each envir that should be changed inside the admons: --latex_admon_envir_map=pycod-pycod_yellow,fpro-fpro2 (from-to,from-to,... syntax).
--latex_subex_header_postfix=... Default:). Gives headers a), b), etc. Can be set to period, colon, etc.
--xelatex Use xelatex instead of latex/pdflatex.
--latex_double_hyphen Replace single dash - by double dash -- in LaTeX output. Somewhat intelligent, but may give unwanted edits. Use with great care!

148

--latex_elsevier_journal=... Sets the journal name for the --latex_style=elsevier style. Default: none (no journal name).
--ipynb_split_pyshell=... Split interactive sessions into multiple cells after each output. Applies to pyshell and ipy code environments. on, True, yes: split (default). off, False, no: do not split. Note that pyshell-t and ipy-t environments just displays the session, while default pyshell and ipy removes all output (all output from print statements will come after the entire session).
--ipynb_disable_mpl_inline Disable automatic insertion of ‘%matplotlib inline‘ before the first import of matplotlib.
--ipynb_cite=... Typesetting of bibliography. plain: simple native typesetting (same as pandoc) (default); latex-plain: Similar to latex-style plain; latex: ipynb support for latex-style bibliographies (not mature).
--ipynb_admon=... Typesetting of admonitions (hint, remarks, box, notice, summary, warning, question, block - quotes are typeset as quotes). quote: as Markdown quote (default) with gray line on the left. paragraph: just the content with the title as paragraph heading. hrule: title with horizontal rule above and below, then text and horozontal rule.
--ipynb_figure=... How to typeset figures in ipynb: md (plain Markdown syntax); imgtag (tag, default); Image (python cell with Image object).
--ipynb_movie=... How to typeset movies in ipynb: md (plain Markdown syntax, default); HTML: python cell with notebook ‘HTML‘ object containing the raw HTML code that is used in the DocOnce HTML format; ipynb: python cell with notebook ‘HTML‘ object with simple/standard ipynb HTML code for showing a YouTube or local video with a <video> tag.
--ipynb_non_editable_text All text in a notebook is set to be uneditable. Code blocks are unchanged
--ipynb_non_editable_code All codeblocks in a notebook is set to be uneditable
--verbose Write out all OS commands run by doconce.
--examples_as_exercises Treat examples of the form "==== Example: ..." as in exercise environments.
--exercises_as_subsections Forces exercises to be typeset as subsections. Used to override various latex environments for exercises (esp. in Springer styles).
--solutions_at_end Show solutions to exercises at the end of the document.
--without_solutions Leave out solution environments from exercises.
--answers_at_end Show answers to exercises at the end of the document.
--without_answers Leave out answer environments from exercises.
--without_hints Leave out hints from exercises.
--exercise_solution=... Typesetting of solutions: paragraph, admon, or quote.
--wordpress Make HTML output for wordpress.com pages.
--tables2csv Write each table to a CSV file table_X.csv, where X is the table number (autonumbered in according to appearance in the DocOnce source file).
--sections_up Upgrade all sections: sections to chapters, subsections to sections, etc.
--sections_down Downgrade all sections: chapters to sections, sections to subsections, etc.
--os_prompt=... Terminal prompt in output from running OS commands (the @@@OSCMD instruction). None or empty: no prompt, just the command; nocmd: no command, just the output. Default is "Terminal>".
--code_skip_until=... @@@CODE import: skip lines in files up to (and incuding) specified line.
--code_prefix=... Prefix all @@@CODE imports with some path.
--figure_prefix=... Prefix all figure filenames with, e.g., an URL.
--movie_prefix=... Prefix all movie filenames with, e.g., an URL.
--no_mp4_webm_ogg_alternatives Use just the specified (.mp4, .webm, .ogg) movie file; do not allow alternatives in HTML5 video tag. Used if the just the specified movie format should be played.
--handout Makes slides output suited for printing.
--urlcheck Check that all URLs referred to in the document are valid.
--labelcheck=... Check that all ref{X} has a corresponding label{X}. Fake examples will fail this check and so will generalized references. Turn on when useful. Values: off (default), on.
--short_title=... Short version of the document’s title.
--markdown Allow Markdown (and some Extended Markdown) syntax as input.
--md2do_output=... Dump to file the DocOnce code arising from converting from Markdown. Default value is None (no dump). Any filename can be specified: --md2do_output=myfile.do.txt
--github_md Turn on GitHub-flavored Markdown dialect of the pandoc translator
--slate_md Turn on Slate-extensions to Markdown in the pandoc translator. To be used together with --github_md.
--strapdown Wrap Markdown output in HTML header/footer such that the output file (renamed as .html) can automatically be rendered as an HTML via strapdownjs.com technology. Combine with --github_md for richer output. Styles are set with --bootswatch_theme=cyborg (for instance).
--bootswatch_theme=... Bootswatch theme for use with --strapdown option.
--strict_markdown_output Ensure strict/basic Markdown as output.
--multimarkdown_output Allow MultiMarkdown as output.
--quiz_question_prefix=... Prefix/title before question in quizzes. Default: "Question:". Can also be set in square brackets for each individual question. ("Q: [] What is 1+1?" results in no prefix/title before the "What is 1+1?".
--quiz_choice_prefix=... Prefix/title before choices in quizzes.

Default for HTML: "Choice", resulting in numbered choices "Choice 1:", "Choice 2:", etc.
A value with colon, period, or question mark (e.g., "Answer:") leaves out the numbering.
Default for latex/pdflatex: letter or letter+checkbox.
Other values: number, number+checkbox, number+circle, letter+circle, letter.
The checkbox or circle is always omitted if answers or solutions are included (i.e., if none of the --without_answers and --without_solutions is set).
The choice prefix can also be set in square brackets for each individual choice. ("Cr: [] Two" results in no prefix/title before the the answer "Two".

--quiz_horizontal_rule=... on (default): <hr> before and after quiz in HTML. off: no <hr>.
--quiz_explanations=... on/off. Some output formats do not support explanations with figures, math and/or code, this option turns all explanations off.
--rst_uio Univ. of Oslo version of rst files for their Vortex system.
--rst_mathjax Use raw HTML with MathJax for LaTeX mathematics in rst files.
--sphinx_preserve_bib_keys Use the user’s keys to in bibliography instead of numbers
--sphinx_keep_splits Respect user’s !split commands. Default: Override user’s !split and insert new !split before all topmost sections. This is what makes sense in a Sphinx Table of Contents if one wants to split the document into multiple parts.
--sphinx_figure_captions=... Font style in figure captions: emphasize (default) or normal. If you use boldface or emphasize in the caption, the font style will be normal for that caption.
--oneline_paragraphs Combine paragraphs to one line (does not work well).
--execute Automatically run code blocks and show output below the code block.
--verbose-execute Print output from execute cells.
--ignore_output Ignore output cells. Useful when you want to use execute rather than predefined output cells.
--html_responsive_figure_width Use figure width as max-width, and set width to 100 percent so that figures can shrink to device width.

149

24 Installation of DocOnce and its Dependencies

DocOnce is hosted on PyPi at URL: https://pypi.org/project/DocOnce/1.
5.5/ and GitHub at https://github.com/doconce/doconce. Installation can
be done via

pip install DocOnce
or if doconce is already installed
pip install DocOnce --upgrade

However, the recommended approach is to have a copy of the source on
the local computer and run pip install in that directory:

git clone git@github.com:doconce/doconce.git
cd doconce
pip install -r requirements.txt
python setup.py install

Since DocOnce is frequently updated, you can update your software to the
most recent update:

cd doconce
git pull origin master
pip install --upgrade .

What about Mac and Windows?

DocOnce is primarily tested on GNU/Debian Linux systems, but also to
a minor extent on Mac OS X. Experience with Windows is limited. Since
most packages are Python-based and can be installed via pip install
no problems should arise on Mac and Windows. However, some of the
image processing tools and spell checking apply Unix-specific software.

24.1 Dependencies

Producing HTML documents, plain text, pandoc-extended Markdown, and wikis
can be done without installing any other software. However, if you want other
formats as output (LATEX, Sphinx, reStructuredText) and assisting utilities such
as preprocesors, spellcheck, file differences, bibliographies, and so on, a lot of
extra software must be installed.

Preprocessors. If you make use of the Preprocess preprocessor, this pro-
gram must be installed:

pip install preprocess --upgrade

A much more advanced alternative to Preprocess is Mako. Its installation is
done by

150

https://pypi.org/project/DocOnce/1.5.5/
https://pypi.org/project/DocOnce/1.5.5/
https://github.com/doconce/doconce
https://github.com/doconce/preprocess
http://www.makotemplates.org

pip install Mako

It is recommended to install both Preprocess and Mako.
Note that neither Preprocess nor Mako is run if you do not have prepro-

cessor directives in your DocOnce source. That is, you only need this extra
software if you make active use of preprocessors.

Bibliography. The Python package Publish is needed if you use a bibliogra-
phy in your document (cite commands and a BIBFILE: specification). The
installation is done by

pip install publish

Image file handling. Different output formats require different formats of im-
age files. For example, PDF or PNG is used for pdflatex, PostScript for latex,
while HTML needs JPEG, GIF, or PNG formats. DocOnce calls up programs
from the ImageMagick suite for converting image files to a proper format if
needed. The ImageMagick suite can be installed on all major platforms. On
Debian Linux (including Ubuntu) systems one can simply write

sudo apt-get install imagemagick

The convenience program doconce combine_images, for combining several
images into one, will use montage and convert from ImageMagick and the
pdftk, pdfnup, and pdfcrop programs from the texlive-extra-utils Debian
package. The latter gets installed by

sudo apt-get install texlive-extra-utils

Automatic image conversion from EPS to PDF calls up epstopdf, which
can be installed by

sudo apt-get install texlive-font-utils

Spellcheck. The utility doconce spellcheck applies by default the ispell
program for spellcheck. On Debian (including Ubuntu) it is installed by

sudo apt-get install ispell

Alternatively, doconce spellcheck can use the aspell program, which can
be installed by

sudo apt-get install aspell

151

https://github.com/doconce/publish
http://www.imagemagick.org/script/index.php

Ptex2tex for LATEX Output. Originally, DocOnce relied on the ptex2tex pro-
gram for very flexible choice of typesetting of verbatim code blocks. A sim-
plified version, doconce ptex2tex, is bundled with DocOnce. However, even
greater flexibility is now offered by the --latex_code_style= option to doconce
format so unless you already are a ptex2tex user, it is recommended to forget
about ptex2tex and just use the --latex_code_style= option.

The stand-alone ptex2tex program is installed by

svn checkout http://ptex2tex.googlecode.com/svn/trunk/ ptex2tex
cd ptex2tex
python setup.py install

It may happen that you need additional style files, you can run a script, cp2texmf.sh:

cd latex
sh cp2texmf.sh # copy stylefiles to ~/texmf directory
cd ../..

This script copies some special stylefiles that that ptex2tex potentially makes
use of. Some more standard stylefiles are also needed. These are installed by

sudo apt-get install texlive

on Debian Linux (including Ubuntu) systems. TeXShop on Mac comes with
the necessary stylefiles (if not, they can be found by googling and installed
manually in the /texmf/tex/latex/misc directory).

Note that the doconce ptex2tex command, which needs no installation be-
yond DocOnce itself, can be used as a simpler alternative to the ptex2tex
program.

Pygments and the Minted Code Style. The minted LATEX style is popular for
typesetting code. This style requires the package Pygments to be installed. On
Debian Linux, the simplest approach is to install sphinx:

pip install sphinx

All use of the minted style requires the -shell-escape command-line argu-
ment when running LATEX, i.e., pdflatex -shell-escape.

Inline comments apply the todonotes LATEX package if the option --latex_todonotes
is given. The todonotes package requires several other packages: xcolor,
ifthen, xkeyval, tikz, calc, graphicx, and setspace. The relevant Debian
packages for installing all this are listed below.

LATEX packages. Many LATEX packages are potentially needed, depending on
various constructions in the text and command-line options used when com-
pling DocOnce to LATEX. The standard packages always required are relsize,
makeidx, setspace, color, amsmath, amsfonts, xcolor, bm, microtype, inputenc,
and hyperref. Optional packages that might be included in the .tex out-
put are minted, listings, fancyvrb, xunicode, inputenc, helvet, mathpazo,

152

http://code.google.com/p/ptex2tex
http://pygments.org

wrapfig, calc, ifthen, xkeyval, tikz, graphicx, setspace, shadow, disable,
todonotes, lineno, xr, framed, mdframe, movie15, a4paper, and a6paper.

Relevant Debian packages that gives you all of these LATEX packages are
texlive
texlive-extra-utils
texlive-latex-extra
texlive-font-utils

Alternatively, one may pull in texlive-full to get all available style files.
If you want to use the anslistings code environment with ptex2tex (.ptex2tex.cfg

styles Python_ANS, Python_ANSt, Cpp_ANS, etc.) or doconce ptex2tex (envir=ans
or envir=ans:nt), you need the anslistings.sty file. It can be obtained from
the ptex2tex source. The same code style is in “modern DocOnce” just imple-
mented by the command-line option
"--latex_code_style=default:lst[style=yellow2_fb]"

Sphinx or reStructuredText Output. Output to sphinx or rst requires the
Sphinx software, installed by
pip install sphinx --upgrade

DocOnce comes with many Sphinx themes that are not part of the standard
Sphinx source distribution:

• bootstrap: https://pypi.org/project/sphinx-bootstrap-theme/

• solarized: https://pypi.org/project/sphinxjp.themes.solarized/

• impressjs: https://pypi.org/project/sphinxjp.themes.impressjs/

• sagecellserver: https://pypi.org/project/icsecontrib-sagecellserver/

• cloud and redcloud: https://pypi.org/project/cloud_sptheme/

It can also be handy to have special typesetting of IPython sessions:
pip install pygments-ipython-console
qtconsole==5.0.1

To make OpenOffice or LibreOffice documents from rst output, you will
need more software, typically the following on a Debian system:
sudo apt-get install unoconv libreoffice libreoffice-dmaths

Markdown and Pandoc Output. The DocOnce format pandoc outputs the
document in various Markdown versions: the Pandoc extended Markdown for-
mat (which via the pandoc program can be translated to a range of other for-
mats), strict Markdown, and GitHub-flavored Markdown. Installation of Pandoc,
written in Haskell, is most easily done by
sudo apt-get install pandoc

on Debian (Ubuntu) systems.

153

https://code.google.com/p/ptex2tex/source/browse/trunk/latex/styles/with_license/anslistings.sty
http://sphinx.pocoo.org
https://pypi.org/project/sphinx-bootstrap-theme/
https://pypi.org/project/sphinxjp.themes.solarized/
https://pypi.org/project/sphinxjp.themes.impressjs/
https://pypi.org/project/icsecontrib-sagecellserver/
https://pypi.org/project/cloud_sptheme/
http://johnmacfarlane.net/pandoc/

Epydoc Output. When the output format is epydoc one needs that program
too, installed by

svn co https://epydoc.svn.sourceforge.net/svnroot/epydoc/trunk/epydoc epydoc
cd epydoc
sudo make install
cd ..

Remark. Several of the packages above installed from source code are also
available in Debian-based system through the apt-get install command.
However, we recommend installation directly from the version control system
repository as there might be important updates and bug fixes. For svn directo-
ries, go to the directory, run svn update, and then python setup.py install.
For Mercurial (hg) directories, go to the directory, run hg pull; hg update,
and then python setup.py install.

Analyzing file differences. The doconce diff file1 file prog command
for illustrating differences between two files file1 and file2 using the program
prog requires prog to be installed. By default, prog is difflib which comes
with Python and is always present if you have DocOnce installed. Another
choice, diff, should be available on all Unix/Linux systems. Other choices,
their URL, and their sudo apt-get install command on Debian (Ubuntu) sys-
tems appear in the table below.

Program URL Debian/Ubuntu install
pdiff a2ps wdiff sudo apt-get install a2ps wdiff texlive-latex-extra texlive-latex-recommended
latexdiff latexdiff sudo apt-get install latexdiff
kdiff3 kdiff3 sudo apt-get install kdiff3
diffuse diffuse sudo apt-get install diffuse
xxdiff xxdiff sudo apt-get install xxdiff
meld meld sudo apt-get install meld
tkdiff.tcl tkdiff not in Debian

25 Basic Parsing Ideas

The (parts of) files with computer code to be directly included in the document
are first copied into verbatim blocks.

All verbatim and TeX blocks are removed and stored elsewhere to ensure
that formatting rules are not applied to these blocks.

The text is examined line by line for typesetting of lists, as well as handling
of blank lines and comment lines. List parsing needs awareness of the context.
Each line is interpreted by a regular expression

(?P<indent> *(?P<listtype>[*o-])? *)(?P<keyword>[^:]+?:)?(?P<text>.*)\s?

154

http://www.gnu.org/software/a2ps/
http://www.gnu.org/software/wdiff/
http://www.ctan.org/pkg/latexdiff
http://kdiff3.sourceforge.net/
http://diffuse.sourceforge.net/
http://xxdiff.sourceforge.net/local/
http://meldmerge.org/
https://sourceforge.net/projects/tkdiff/

That is, a possible indent (which we measure), an optional list item identifier,
an optional space, optional words ended by colon, and optional text. All lines
are of this form. However, some ordinary (non-list) lines may contain a colon,
and then the keyword and text group must be added to get the line contents.
Otherwise, the text group will be the line.

When lists are typeset, the text is examined for sections, paragraphs, title,
author, date, plus all the inline tags for emphasized, boldface, and verbatim text.
Plain substitutions based on regular expressions are used for this purpose.

The final step is to insert the code and TeX blocks again (these should be
untouched and are therefore left out of the previous parsing).

It is important to keep the DocOnce format and parsing simple. When a
new format is needed and this format is not obtained by a simple edit of the
definition of existing formats, it might be better to convert the document to reST
and then to XML, parse the XML and write it out to the new format. When the
DocOnce format is not sufficient for getting the layout you want, it is suggested
to filter the document to another, more complex format, say reST or LATEX, and
work further on the document in this format.

25.1 Typesetting of Function Arguments, Return Values, and
Variables

Note.

This text is somewhat outdated. DocOnce now supports NumPy-style
docstrings. DocOnce can also do automatic references to Python docu-
mentation, say the ‘math‘ module, but the link only works in case of Sphinx
output. Typical syntax is

With :mod:‘numpy‘ and the :func:‘scipy.io.loadmat‘ function in
the :mod:‘scipy.io‘ module, we can ...

In case of ambiguous names, say a local math module, one can use
python, numpy, scipy, and mpl (matplotlib) as prefix (as defined in conf.py,
generated by the doconce sphinx_dir):

With :func:‘python:math.sin‘ instead of :func:‘math.sin‘ ...

(More information can be found in the Sphinx API document written by
the author - under development.)

A Mako function can provide greater flexibility such that other formats
than Sphinx can take advantage of such references (full URL can be built
into the function, depending on the format).

In the comments (or doc strings) of computer code, one often wants
to explain what a function takes as arguments and what the return

155

values are. Similarly, it is often desired to document classes, in-
stances, and module variables. Such arguments/variables can be
typeset as description lists in the form shown below and placed at
the end of the doc string. Note that argument, keyword argument,
return, instance variable, class variable, and module variable
are the only legal keywords (descriptions) for the description list in
this context. If the output format is Epytext (Epydoc) or Sphinx, such
lists of arguments and variables are nicely formatted.

- argument x: x value (float),
which must be a positive number.

- keyword argument tolerance: tolerance (float) for stopping
the iterations.

- return: the root of the equation (float), if found, otherwise None.
- instance variable eta: surface elevation (array).
- class variable items: the total number of MyClass objects (int).
- module variable debug: True: debug mode is on; False: no debugging

(bool variable).

The result depends on the output format: all formats except Epytext
and Sphinx just typeset the list as a list with keywords.

module variable x: x value (float), which must be a positive num-
ber.

module variable tolerance: tolerance (float) for stopping the itera-
tions.

26 References

Note.

The references below are just for illustrating and testing citation syntax
and not references for explaining parts of the text.

References

[1] D. E. Knuth. Theory and practice. EATCS Bulletin, 27:14–21, 1985.

[2] H. P. Langtangen. A document for testing DocOnce. http://hplgit.
github.io/doconce/test/demo_testdoc.html.

[3] H. P. Langtangen. The FEMDEQS program system. Research report in
mechanics, Department of Mathematics, University of Oslo, 1989.

[4] H. P. Langtangen. Numerical solution of first passage problems in random
vibrations. SIAM Journal of Scientific and Statistical Computing, 15:997–
996, 1994.

156

http://hplgit.github.io/doconce/test/demo_testdoc.html
http://hplgit.github.io/doconce/test/demo_testdoc.html

[5] H. P. Langtangen, K.-A. Mardal, and R. Winther. Numerical methods for
incompressible viscous flow. Advances in Water Resources, 25:1125–1146,
2002.

[6] H. P. Langtangen and G. Pedersen. Propagation of large destructive waves.
International Journal of Applied Mechanics and Engineering, 7(1):187–204,
2002.

[7] K.-A. Mardal, G. W. Zumbusch, and H. P. Langtangen. Software tools for
multigrid methods. In H. P. Langtangen and A. Tveito, editors, Advanced
Topics in Computational Partial Differential Equations – Numerical Methods
and Diffpack Programming, Lecture Notes in Computational Science and
Engineering, pages 97–152. Springer, 2003.

157

Index
––encoding=, 97
–answers_at_end, 50
–code_skip_until=, 66
–device=, 89
–examples_as_exercises, 52, 56
–exercises_in_zip, 56
–exercises_in_zip_filename=, 57
–figure_prefix=, 16, 57
–filter=, 56
–html_admon=, 54, 78
–html_admon_bd_color=, 78
–html_admon_bg_color=, 78
–html_slide_theme=, 96
–html_style=, 78, 97
–html_theme=, 91
–keep_pygments_html_bg, 92, 96
–language, 97
–latex_admon=, 79
–latex_admon_color=, 79
–latex_admon_envir_map=, 55, 80
–latex_admon_title_no_period, 80
–latex_code_style=, 55, 62
–latex_colored_table_rows=, 28
–latex_table_format=, 28
–latex_table_row_sep=, 28
–latex_todonotes, 37
–list_of_exercises, 53
–movie_prefix=, 57
–nav_buttons, 91
–no_ampersand_quote, 36
–no_emoji, 49
–no_mp4_webm_ogg_alternatives, 22
–os_prompt=, 27
–prefix_movie, 23
–pygments_html_style=, 78, 96
–replace_ref_by_latex_auxno=, 41
–section_numbering, 52
–skip_inline_comments, 37
–solution_at_end, 50
–tables2csv, 30
–without_answers, 50
–without_solutions, 50
.nojekyll file, 114

abstract, 12
admon

block, 76
notice, 76
question, 76
summary, 76
warning, 76

admonition layout, 78
admonitions, 76
algorithms, 75
ampersand, 36
animation, 24
appendix, 12
ASCII output, 138
AUTHOR keyword, 8
author

email, 8
institution, 8

automake_sphinx.py, 91
automatic editing, 117

BIBFILE:, 87
bibliography, 85
bibliography, database, 85
BibTeX, 85
block admon, 76
blog posts, 123
Bokeh, 17

alternatives, 18
converting from matplotlib, 20
reduce size, 18

boldface words, 32
box environment, 80

Calibre, 68
citations, 39, 41, 86
citations, generalized, 41
cite, 39, 41, 86
code blocks, 61
colored text, 32
command-line options

doconce format, 146
comments

mako, 27

c© 2021, Hans Petter Langtangen, Kristian Gregorius Hustad. Made with DocOnce

https://github.com/doconce/doconce

not visible, 27
comments Externaldocuments, 43
comments, inline, 37
computer code blocks, 61
conf.py (Sphinx configuration), 141
copyright syntax, 9
Creole wiki output, 145
cross referencing, 40
cross-document referencing, 41

DATE keyword, 8
debugging, 112
demos, 7, 117
description lists, 31
doconce, 1
doconce command

subst, 55
doconce commands

remove_inline_comments, 37
apply_edit_comments, 38, 39
cvs2table, 29
extract_exercises, 56
fix_bibtex4publish, 86
format, 112
latex_exercise_toc, 53
ref_external, 45
replace, 87
slides_beamer, 92
slides_html, 96
sphinx_dir, 91
split_beamer, 91
split_html, 91
split_rst, 91
subst, 96

doconcecommands
split_rst, 91

doconce editing (Emacs), 99
doconce format options, 146
doconce syntax highlighting, 99

em-dash, 35, 36
Emacs doconce support, 99
emojis, 49
emphasized words, 32
enumerated lists, 31
epub, 68

ePub output, 135
epubmaker.py, 68
equation tagging, 54
equation with frame, 80
equations, 67
example environment, 49
examples, 83
exercise environment, 49

figures, 12
animation, 24
Bokeh, 17
FIGPREFIX, 16
FIGURE keyword, 12
format, 15
inline, 14
placement, 13
references, 14
sidecaption, 17
subfigures, 16
Tikz, 17

footnotes, 36
formulas (math), 39
frame (box) environment, 80

generalized citations, 41
Google blogger, 123
Google docs output, 145
Google wiki output, 145

headings, 11
headlines, 11
horizontal rule, 35
HTML admonitions, 78
HTML file collection, 120
HTML layouts, 119
HTML movies, 119
HTML output, 118
HTML syntax highlighting, 118
HTML templates, 119
HTML5 slides, 92
hyperlinks, 33

index, 48
inline comments, 37, 116
inline comments for editing, 38

159

inline mathematics, 39
inline tagging, 32

ampersand, 36
boldface, 32
color, 32
comments, 37
cross-referencing, 40
emails, 33
emojis, 49
emphasis (italic), 32
footnotes, 36
horizontal rule, 35
hyperlinks, 33
idx, 48
index, 48
line breaks, 39
local files, 33
m-dash, 35
mathematics, 39
n-dash, 36
non-breaking space, 35
quotation, 34
refaux, 41, 44
refch, 44
typewriter text, 32
verbatim text, 32

inline verbatim text, 32
installation, 150
IPython notebook, 135
itemized lists, 30

Jupyter notebook, 135

keyword lists, 31
keywords

AUTHOR, 8
DATE, 8
FIGURE, 12
MOVIE, 21
TITLE, 8

Kindle, 70

labels, 40
LaTeX

tables, 28
LaTeX admonitions, 78

LaTeX bibliographic styles, 87
LaTeX blocks with math, 67
LaTeX newcommands, 71
LaTeX output, 127
LaTeX slides, 92
LaTeX style options, 130
LaTeX syntax highlighting, 131
linebreak, 39
links, 33
lists, 30

bullets, 30
descriptions, 31
enumerated, 31
keywords, 31
ordered, 31
unordered, 30

m-dash, 35
macros (LATEX), 71
mako, 70, 75, 83, 100, 155

</%doc>, 27
<%doc>, 27
comments, 27
eval, 89
FIGPREFIX, 16
FORMAT, 45, 88
HTMLMOVIE, 25
refex for examples, 83
variables, 89

mako preprocessor, 88, 115
mako programming, 100
makomovie function, 26
Markdown output, 124
Markdown slides, 92
mathematical equations, 67
mathematical formulas, 39
Matlab notebook, 138
Matlab publish format (notebook), 138
MediaWiki output, 145
MOVIE keyword, 21
movies

.ogg example, 21
in html, 22
in sphinx, 22
in LATEX, 22
url example, 22

160

Vimeo, 23
YouTube, 23

movies in HTML, 119
MS Word, 68
multi-page documents, 90, 120

n-dash, 36
nbsp, 35
newcommands (LATEX), 71
non-breaking space, 35
notebook, 135, 138
notes (visible/invisible), 117
notice admon, 76

open links in new window, 123, 141
ordered lists, 31
output format

LATEX, 127
ASCII, 138
Creole wiki, 145
ePub, 135
GitHub-flavored Markdown, 125
Google wiki, 145
HTML, 118
LibreOffice, 135
Markdown, 124
MediaWiki, 145
MS Word, 135
notebook, 135, 138
OpenOffice, 135
Pandoc, 124
plain untagged text, 138
reStructuredText, 139
Sphinx, 139
strapdown Markdown, 127
strict Markdown, 125
XeLaTeX, 135

Pandoc output, 124
parsing, 154
plain untagged text output, 138
postprocessing, 88
preprocess

tables, 29
preprocess comments, 27
preprocess preprocessor, 88, 115

preprocess tests, 25
preprocessing, 88, 115
problem environment, 49
programs

output from, 26
running, 26

project environment, 49
ptex2tex doconce version, 129
ptex2tex program, 129
publish, 85

BIBFILE, 87
export, 86
import, 86
keys, 86

Publish (for bibliography), 85
pygmentize, 34

question admon, 76
quotation

syntax, 34

ref (generalized reference), 41
ref (label reference), 40
refaux (label reference), 41
refch (generalized chapter reference),

43
reference list, 85
references, 40
reStructuredText output, 139

section headings, 11
short title (for slides), 93
short title (in sections), 53, 94
slide syntax, 94
slides, 92

short tiles, 93
smileys, 49
Sphinx

movies, 22
sphinx code-blocks:, 63
Sphinx directory, 143
Sphinx output, 139
Sphinx styles, 141
Sphinx themes, 141
split command, 88
splitting documents, 90, 120

161

summary admon, 76
syntax highlighting, 61
syntax highlighting for doconce, 99

table of contents, 11
tables, 28

.csv, 29
tagging equation, 54
TITLE keyword, 8
TOC keyword, 11
toc depth, 11
track changes, 38
tweaking output, 117
typesetting

function arguments, 155
return values, 155
variables, 155

typewriter text, 32

verbatim text, 26
verbatim text, code blocks, 61
verbatim text, inline, 32

warning admon, 76
wiki output, 145
Word (Microsoft), 68
Wordpress blog, 123

XeLaTeX output, 135

162

	What Is DocOnce?
	Demos and Documentation

	Markup Based on Special Lines
	Heading with title and author(s)
	Copyright
	Table of contents
	Section headings
	Abstract
	Appendix
	Figures
	Movies
	Copying Computer Code from Source Files
	Inserting the Output from Operating System Commands
	Comments
	Tables
	Lists

	Inline Tagging
	Emphasized Words
	Inline Verbatim Text
	Links to Web Addresses
	Links to Mail Addresses
	Links to Local Files
	Quotes
	Non-Breaking Space
	Horizontal rule
	Em-dash
	En-dash
	Ampersand
	Footnotes
	Inline Comments
	Inline Comments for Editing
	Forced Line Breaks
	Inline Mathematics
	Cross-Referencing
	Generalized Cross-Referencing
	Index
	Emojis

	Exercises, Problems, Projects, and Examples
	Exercise Syntax Examples
	Typesetting of Exercises
	List of Exercises, Problems, and Projects
	Numbering of Extra Equations in Solutions
	Typesetting of solutions to exercises
	Extracting Selected Exercises in a Separate Document
	Extracting Exercises as Stand-Alone Documents
	Example of an Exercise

	Other Environments
	Blocks of Verbatim Computer Code
	LaTeX Blocks of Mathematical Text
	Macros (Newcommands)
	Writing Guidelines (Especially for LaTeX Users!)
	Typesetting of Algorithms
	Admonitions
	User-Defined Environments

	Bibliography (References)
	Importing your data to the Publish database
	Requirements to input data
	Adding new references to the database
	Exporting the database
	Referring to publications
	Specifying the Publish database
	LaTeX Bibliography Style

	Preprocessing and Postprocessing
	The Preprocess and Mako Preprocessors
	Splitting Documents into Smaller Pieces

	Writing Slides
	Overview
	Slide Elements
	HTML5 Slides
	LaTeX Beamer Slides

	Support for non-English
	Misc
	Missing Features
	Git .gitignore File
	Emacs DocOnce Formatter
	Atom Syntax Highlighting for DocOnce

	Mako Programming
	The Basics of Mako
	Debugging Python code in Mako
	Example: Nomenclature functionality
	Example: Executing Python and using SymPy Objects in LaTeX
	Example: Extending Tables to Handle Figures
	Example: Defining a Theorem Environment
	Tools for Writing DocOnce Documents
	Debugging

	From DocOnce to Other Formats
	Writing a Makefile
	Generating a Makefile
	Spell checking
	Preprocessing
	Removal of Inline Comments
	Notes
	Demo of Different Formats
	Tweaking the DocOnce Output
	Useful Options for doconce format

	HTML
	Basic HTML Output
	Typesetting of Code
	Handling of Movies
	HTML Styles
	HTML templates
	Splitting HTML documents
	URL to files hosted on GitHub
	Other HTML options
	Blog Posts

	Pandoc and Markdown
	Markdown to HTML conversion
	Strict Markdown
	GitHub-flavored Markdown
	MultiMarkdown
	Strapdown rendering of Markdown text
	Using Pandoc to go from LaTeX to MS Word or HTML

	LaTeX
	Overview
	The old ptex2tex step
	LaTeX-PDF: Generate LaTeX (Step 1)
	LaTeX-PDF: Edit the LaTeX File (Step 2, Optional)
	LaTeX-PDF: Generate PDF (Step 3)
	XeLaTeX
	From PDF to e-book formats
	Microsoft Word or LibreOffice

	Jupyter (IPython) Notebooks
	Hidden code blocks
	Displaying code as plain text instead of executable cells
	Figures
	Movies
	Admonitions
	References to an External Textbook
	Conversion from Notebook Back to DocOnce

	Matlab Notebooks
	Plain ASCII Text
	reStructuredText
	Sphinx
	The Basic Steps
	Links
	Themes
	RunestoneInteractive books
	The manual Sphinx procedure

	Wiki Formats
	Google Docs
	Options for the doconce commands
	doconce format command-line options

	Installation of DocOnce and its Dependencies
	Dependencies

	Basic Parsing Ideas
	Typesetting of Function Arguments, Return Values, and Variables

	References
	References
	Index

